Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Homburger Wissenschaftler an Forschungsprojekt zur Signalübertragung in der Netzhaut beteiligt

01.07.2011
Die Netzhaut des menschlichen Auges, die einfallendes Licht in Nervenimpulse umwandelt und so Sehen ermöglicht, ist eine sehr leistungsfähige und hochkomplexe Gewebestruktur. Daher ist sie für Störungen anfällig, die bis zur Erblindung führen können.

Ein internationaler Forscherverbund, dem Professor Dr. Frank Schmitz vom Institut für Anatomie und Zellbiologie in Homburg angehört, untersucht nun, wie die Signalübertragung in der Netzhaut im Einzelnen vor sich geht. Aus den Forschungsergebnissen erhoffen sich die Wissenschaftler auch neue Erkenntnisse über die Ursachen von Netzhaut-Erkrankungen.

Die drei beteiligten Teams werden vom International Human Frontier Science Program (HFSP) drei Jahre lang mit 350.000 US-Dollar jährlich gefördert.

Das Auge mit der Netzhaut als Licht-sensitiver Struktur ist das wichtigste Sinnesorgan des menschlichen Körpers. Leistungsfähigkeit und Dynamik der Netzhaut sind enorm: Ihre Sinneszellen wandeln das auftreffende Licht in elektrische Signale um (Phototransduktion), die von den Synapsen, den Kontaktstellen zwischen verschiedenen Nervenzellen, verarbeitet und weitergeleitet werden.

Die hohen Anforderungen, die der Sehprozess an die Strukturen der Netzhaut stellt, macht dieses auf Hochleistung getrimmte System auch anfällig für Störungen, die zu Erkrankungen der Netzhaut bis hin zur Erblindung führen können. Zu diesen schweren Erkrankungen gehören beispielsweise die Retinitis pigmentosa und verschiedene Typen der Zapfen-Stäbchen-Dystrophien, bei denen die Photorezeptoren absterben, sowie die Lebersche kongenitale Amaurose, ein Funktionsverlust der Netzhaut, der bereits im Kindesalter zur Erblindung führt.

Wie die Signalverarbeitung in den Synapsen der reifen und der sich entwickelnden Netzhaut genau funktioniert, wollen nun die Wissenschaftler des Forschungsverbundes herausfinden. Welche Proteine sind an der Signalübermittlung beteiligt, und wie arbeiten diese Proteine in der Synapse? Das sind einige der Fragen, die sie mit genetischen, physiologischen und modernen bildgebenden Verfahren (beispielsweise mit der Zwei-Photonen-Mikroskopie am lebenden Gewebe) untersuchen wollen. Von ihrer Zusammenarbeit erhoffen sich die drei beteiligten Forschergruppen ein besseres Verständnis von Eigenschaften und Dynamik der Signalübertragung in der Netzhaut, um daraus mögliche Ursachen von Netzhaut-Erkrankungen abzuleiten.

Neben dem Homburger Wissenschaftler Professor Dr. Frank Schmitz gehören dem internationalen Forscherkonsortium Professor Leon Lagnado (MRC, Cambridge, UK) und Professor Rachel Wong (University of Washington, Seattle, USA) an. Das International Human Frontier Science Program (HFSP), das die Förderung komplexer biologischer Forschungsthemen unterstützt, stufte ihren gemeinsamen Antrag über die Erforschung synaptischer Erregungsübertragung auf Platz eins von 22 geförderten Projekten ein.

Für weitere Informationen wenden Sie sich bitte an:
Dr. Frank Schmitz,
Professor für Anatomie und Zellbiologie,
Universität des Saarlandes, Medizinische Fakultät
Institut für Anatomie und Zellbiologie
66421 Homburg/Saar
Tel. 06841 / 16-26012
E-Mail: frank.schmitz@uks.eu

Gerhild Sieber | idw
Weitere Informationen:
http://www.uks.eu
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie