Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Hippocampus als Entscheidungsinstanz

20.07.2012
NMDA-Rezeptoren im Hippocampus des Gehirns ermöglichen bei komplexen Orientierungsaufgaben, die richtige Entscheidung zu treffen

Lernen verändert die Synapsen. Für das Erlernen räumlicher Zusammenhänge machten Wissenschaftler bislang eine spezielle Form synaptischer Plastizität im Hippocampus des Gehirns verantwortlich. Diese beruht auf einem Rezeptortyp für den Botenstoff Glutamat: dem NMDA-Rezeptor.


Mäuse ohne funktionierende NMDA-Rezeptoren im Gyrus Dentatus (GD) und in der CA1-Region ihrer Hippocampi (Grin1ΔDGCA1) können so wie normale Kontrolltiere die Position einer verborgenen Insel im Wasserbecken anhand externer Objekte erlernen (Bild Mitte: Wildtyp, schwarz; Grin1ΔDGCA1-Mäuse, rot). Ist die Insel durch einen Ballon markiert und befindet sich an anderer Stelle eine zweiter, identischer Ballon ohne Rettungsinsel, so benutzen die genetisch veränderten Mäuse auch nach zahlreichen Durchläufen immer wieder die Ballons und nicht die Raumpunkte bei der Suche nach der Insel (Bild unten). © Rolf Sprengel/MPI f. medizinische Forschung

Forscher des Max-Planck-Instituts für medizinische Forschung in Heidelberg und der Universität Oxford haben nun beobachtet, dass sich Mäuse sehr gut orientieren können, auch wenn in Teilen ihres Hippocampus die NMDA-Rezeptor-vermittelte Plastizität abgeschaltet war. Müssen diese Mäuse allerdings einen Konflikt während der Orientierung lösen, können sie die Aufgabe nicht erfolgreich bewältigen. Offenbar werden die hippocampalen NMDA-Rezeptoren zur Erkennung oder Lösung des Konflikts benötigt. Die beteiligten Forscher widerlegen somit ein Dogma der Neurowissenschaften zur Funktion hippocampaler NMDA-Rezeptor-vermittelten Plastizität beim räumlichen Lernen.

Der Hippocampus ist Teil des Vorderhirns und verarbeitet eine Vielzahl von Informationen aus verschiedensten Hirnregionen. Die eingehenden Signale werden von Körnerzellen im Gyrus dentatus zu Pyramidenzellen in der CA3-Region und von diesen zu Pyramidenzellen in der CA1-Rgion weitergeleitet. An den am Signalfluss beteiligten Synapsen können NMDA-Rezeptoren die Übertragungseffizienz des Glutamat Botenstoffs optimieren oder abschwächen. Lange Zeit wurde spekuliert, dass diese Form synaptischer Plastizität zum Erlernen räumlicher Strukturen erforderlich ist. Rolf Sprengel und Peter H. Seeburg vom Max-Planck-Institut für medizinische Forschung haben gemeinsam mit Kollegen aus Oxford und Oslo diese Theorie nun widerlegt.

Die Wissenschaftler haben genetisch veränderte Mäuse untersucht, die keine NMDA-Rezeptoren auf Körnerzellen des Gyrus dentatus und Pyramidenzellen der CA1-Region bilden. So konnten sie erstmals beobachten, was passiert, wenn NMDA-Rezeptor-abhängige Plastizität fast ausschließlich an diesen Synapsen im Hippocampus ausgeschaltet ist. Sie analysierten das Lernverhalten der Mäuse und bemerkten, dass die Lernleistung vom Versuchssaufbau abhing. In einem Standard-Schwimmtest war das räumliche Gedächtnis der genetisch veränderten Tiere genauso gut wie das normaler Kontrolltiere. Bei diesem Test müssen die Tiere in einem wassergefüllten Becken die Position einer knapp unter der Wasseroberfläche platzierten Rettungsinsel anhand externer Orientierungspunkte lernen und die verborgene Insel nach einigen Versuchen bewusst ansteuern.

In einem zweiten Orientierungstest, bei dem die Tiere in drei von sechs identischen Laufstegen eines „Trocken-Labyrinths“ Futter finden konnten, suchten Mäuse ohne NMDA-Rezeptoren im Gyrus dentatus und CA1 des Hippocampus immer wieder Laufstege ohne Futter auf, wohingegen Kontrolltiere – ähnlich wie beim Schwimmtest – Markierungen außerhalb des Labyrinths nutzen, um nach einigen Versuchen bevorzugt die drei mit Futter bestückten Laufstege zu finden.

Obwohl beide Tests räumliches Lernen abrufen, waren die genetisch veränderten Tiere somit nur im Laufsteg-Labyrinth schlechter als Kontrolltiere, anscheinend irritiert durch die Tatsache, dass Laufstege mit Futter belohnt oder nicht belohnt sind. David Bannermann aus Oxford konzipierte deshalb einen zweiten Schwimmtest. Die Position der verborgenen Insel war nun mit einem Ballon markiert. Zur Täuschung wurde ein zweiter identischer Ballon an einer anderen Stelle im Wasserbecken angebracht an der sich keine abgesenkte Insel befand. Die Tiere mussten lernen, dass nur die räumliche Orientierung und nicht die Position der Ballons - entsprechend der optisch identischen Laufstege im Labyrinth - entscheidend für das Auffinden der rettenden Insel ist. Da die Ballons von den Tieren bevorzugt zur Hippocampus-unabhängigen Orientierung genutzt werden, fiel es auch den Kontrolltieren schwer, die verborgene Insel nach zahlreichen Durchgängen zielsicher zu finden. Mäuse, bei denen NMDA-Rezeptoren im Gyrus dentatus und in der CA1-Region fehlten, konnten diese Aufgabe nicht lösen. Entfernt man beide Ballons, oder verändert die Form des Täuschungsballons, so steuerten alle Tiere sehr zügig die Position der unsichtbaren Insel an.

„Dies zeigt eindeutig, dass auch unsere genetisch veränderten Mäuse nach einigen Durchläufen die genaue Position der abgesenkten Rettungsinsel kennen oder sich im Schwimmbecken bei der Suche an unterschiedlichen Ballons zielbewusst orientieren können. Unsere Mäuse haben somit in beiden Aufgaben keine Lern- oder Gedächtnisprobleme. Sind jedoch die Aufgaben zeitlich überlagert und muss die Position identischer Ballons im Schwimmbecken als nicht eindeutige Information bewertet werden, so sind unsere Mäuse nicht fähig, die richtige Entscheidung zur Lösung der Aufgabe zu treffen“, sagt Rolf Sprengel. Die NMDA-Rezeptoren in der CA1-Region des Hippocampus treten demzufolge als Entscheidungsinstanz bei Konfliktsituationen in Erscheinung.

Dies ist ein völlig überraschendes Ergebnis. Es ist konträr zu einem seit über 15 Jahren vorherrschenden Lehrbuch-Dogma, wonach NMDA-Rezeptoren in der CA1-Region des Hippocampus zum Aufbau eines räumlichen Gedächtnisses benötigt werden. „Dank der neuen komplexen genetischen Technik von Rolf Sprengel, die NMDA-Rezeptoren gezielt nur in Teilen des Hippocampus in erwachsenen Mäusen auszuschalten und dank intelligent verknüpfter Verhaltensversuche von David Bannerman wissen wir nun, dass wahrscheinlich NMDA-Rezeptoren in anderen Gehirnregionen für das Erlernen räumlicher Zusammenhänge zuständig sind“, erklärt Peter Seeburg. Die Forscher vermuten deshalb, dass hippocampale NMDA-Rezeptoren auch bei anderen nicht räumlichen Konfliktsituationen von Bedeutung sind.

Kontakt

Prof. Dr. Peter H. Seeburg
Max-Planck-Institut für medizinische Forschung
Telefon: +49 6221 486-495
Fax: +49 6221 486-110
Email: seeburg@­mpimf-heidelberg.mpg.de
Dr. Rolf Sprengel
Max-Planck-Institut für medizinische Forschung
Telefon: +49 62 2148-6101
Email: Rolf.Sprengel@­mpimf-heidelberg.mpg.de

Originalveröffentlichung
David M. Bannerman, Thorsten Bus, Amy Taylor, David J. Sanderson, Inna Schwarz, Vidar Jensen, Øivind Hvalby, J. Nicholas P. Rawlins, Peter H. Seeburg & Rolf Sprengel
Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion

Nature Neuroscience, 15. Juli 2012

Prof. Dr. Peter H. Seeburg | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5903149/nmda-rezeptoren_hippocampus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten