Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hilfe für gestresste Pflanzen

11.02.2009
Das Institut für Bioengineering (IfB) der FH Aachen und das Institut für Biologie I der RWTH entwickeln zurzeit einen Scanner, der in wenigen Sekunden Pflanzenblätter analysiert und so die stressresistenten Pflanzen erkennt. Mit einem flächendeckenden Screening kann der Fortbestand vieler Pflanzenarten gesichert werden.

Stress - eine Zivilisationserkrankung in der modernen Welt. Nicht nur wir Menschen leiden und erkranken daran, auch Pflanzen sind mitunter gestresst. Sie reagieren mit biochemischen Veränderungen auf die unkomfortable Situation, beispielsweise mit einer verlangsamten Photosynthese bei kühleren Temperaturen und wenig Sonneneinstrahlung.

Wenn Pflanzen zu lange zu stark unter Stress stehen, hat das mitunter drastische Auswirkungen: Die Pflanze stirbt. Studien haben ergeben, dass Stressfaktoren wie Trockenheit, Hitze, Kälte oder salzige Böden Hauptursachen für Ernteverluste bei allen Nutzpflanzen sind; bei bis zu 80 Prozent kann der Schaden liegen. Was jetzt bereits für viele Landwirte auf der ganzen Welt besorgniserregend ist, könnte sich in den nächsten Jahren noch verschlimmern: Klimaexperten prognostizieren, dass die klimatischen Veränderungen in wenigen Jahren weltweit zu Lebensbedingungen führen werden, die für viele heutige Nutzpflanzen derart massiven Stress bedeuten, dass sie daran zugrunde gehen. Somit wären in wenigen Jahren viele Pflanzen für den Anbau schlicht nicht mehr geeignet.

Dieses Szenario birgt, neben den ökologischen, große ökonomische und politische Gefahren: Schon heute verzeichnen die Landwirte jährlich Ernteverluste in Millionenhöhe, weil die Pflanzen aufgrund des ausgelaugten Bodens und der klimatischen Bedingungen zu wenig Früchte austragen oder absterben. Um dem entgegenzuwirken, forschen Unternehmen auf der ganzen Welt daran, Pflanzenmutanten zu erzeugen, die besser mit dem vorhandenen Stress umgehen können. Bei Bayer CropScience etwa laufen derzeit mehrere Forschungsprojekte, die sich mit der Züchtung stresstoleranter Linien für Raps, Baumwolle, Reis und Mais befassen. Dabei werden moderne biotechnologische Verfahren eingesetzt, die sowohl gentechnologische als auch nicht-gentechnologische Methoden einschließen. Derzeit verheißt den größten Erfolg, durch gezielte Manipulation einzelner Gene die biochemischen Stoffwechselwege zu verändern.

Um erfolgreiche Neuzüchtungen zu entwickeln, müssen hunderttausende Samen behandelt, Einzelpflanzen angezüchtet und analysiert werden. Diese Messungen an einer größeren Population von Einzelpflanzen sind enorm zeit- und arbeitsaufwendig. Obschon zahlreiche Parameter wie Flächendichte, Struktur und Verteilung von Leitbündeln, Chlorophyllgehalt und noch viele weitere Kriterien wichtig sind für eine Auswahl, sind solch aufwendige Analysen aus Zeitgründen oft nicht möglich. Darüber hinaus ist es erforderlich, dass die Pflanzen erst in ein bestimmtes Wachstumsstadium kommen, bevor mit Sicherheit entschieden werden kann, dass eine erfolgreiche Mutation vorliegt. "Diese Strategie", so Prof. Gerhard Artmann vom Institut für Bioengineering (IfB) der FH, "steht und fällt mit der Möglichkeit, viele 10.000 Pflanzen zu screenen. Will man das gewissenhaft machen, ist das nur mit einem Pflanzen-Screening-Roboter zu erreichen, der rasch und automatisiert anzeigt, ob die Bündelscheidenzellen sich vergrößern, ergrünen und der die Photosyntheserate ermittelt." Einen solchen Roboter gibt es jedoch nicht. In einem Gemeinschaftsprojekt des IfB und dem Institut für Biologie I der RWTH entwickeln Artmann und sein Kollege Prof. Fritz Kreuzaler mit ihren Teams daher zurzeit einen Scanner, der die Blätter analysiert und so die stressresistenten Pflanzen erkennt. Hierbei sollen wesentlich mehr Parameter Berücksichtigung finden, als dies bislang möglich ist. Ein weiteres Ziel ist, pro Blattanalyse nicht mehr als zehn Sekunden zu benötigen. "Das Highthroughput Pflanzenblattscanning wird bereits in sehr frühem Stadium der Forschung zu der Entscheidung beitragen, ob ein bestimmter Mutant erfolgreich war oder nicht und ermöglicht es demzufolge, schneller entscheiden zu können, ob eine bestimmte Strategie zur Mutantenerzeugung erfolgreich war", erklärt Artmann zuversichtlich. An der RWTH werden bereits erste Arbeiten durchgeführt, die dazu dienen sollen, die CO2-Aufnahme von Mais und Zuckerrohr zu erhöhen.

Seit Kurzem arbeitet Artmanns Gruppe auch an einem weiteren, tragbaren Pflanzenblattscanner. Dieser ist in der Lage, das Volumen einzelner Blätter auf ein Zehntel Promille genau zu messen, sodass Umwelteinflüsse wie etwa Wasserentzug oder Salzzufluss unmittelbar in wenigen Sekunden am Blattvolumen abgelesen werden können.

Das BMBF-FHProfUnd-Projekt ist auf drei Jahre angelegt. Es wird von einem Wissenschaftler und einem Doktoranden betreut und bietet zahlreichen Diplomanden und Masterstudierenden beider Hochschulen Stoff für Semester- und Abschlussarbeiten. So entwickeln die beiden Biomedical Engineering-Studentinnen Martina Krystek und Katharina Wendt in ihrem Bachelorprojekt unter anderem das Design für den tragbaren Scanner. Dieser soll, an ein Notebook angeschlossen, auf dem Feld und im Gewächshaus nutzbar sein. "Wenn unser Projekt erfolgreich ist", so Artmann, "würde der Scanner die Pflanzenstressforschung um Millionenbeträge preiswerter und die Auslese treffsicherer machen."

Dr. Roger Uhle | idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive