Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herzschlag in 3D

22.07.2014

Max-Planck-Forscher beobachten Zebrafisch-Herz bei der Arbeit

Bislang waren Mikroskope zu langsam und nicht leistungsfähig genug, das schlagende Herz eines Zebrafisches in 3D aufzuzeichnen.


Schlagendes Herz eines Zebrafisch-Embryos (Herzmuskel (rot), Herzwand und Blutgefäße (türkis)).

© MPI f. molekulare Zellbiologie und Genetik/ Huisken

Ein Forscherteam vom Max-Planck-Institut für molekulare Zellbiologie und Genetik ist es nun gelungen, 3D-Filme von einem Zebrafisch-Herz aufzunehmen. Ihr neuartiger Ansatz: Sie kombinieren die sogenannte Lichtblattmikroskopie, bei der nur eine hauchdünne Schicht der Probe beleuchtet wird, mit intelligenten Bildverarbeitungsmethoden, die aus den Aufnahmen der verschiedenen Schichten eine gestochen klare Aufnahme berechnen.

Auch hochaufgelöste Standbilder von Zebrafisch-Herzen konnten die Dresdner Forscher mit dieser Methode erzeugen. Mithilfe der Optogenetik können sie zudem die Herzzellen so manipulieren, dass diese auf Licht reagieren – so lässt sich der Herzschlag durch Licht anhalten und wieder anstoßen.

Alternativ können die Wissenschaftler das Herz in 3D mit einer Hochgeschwindigkeitskamera aufnehmen und den Durchfluss von Blutzellen durch das Herz und Herzrhythmusstörungen sichtbar machen. So könnten sich in Zukunft auch die Ursachen angeborener Herzfehler besser erforschen lassen.

Die Arbeitsgruppe von Jan Huisken am Max-Planck-Institut für molekulare Zellbiologie und Genetik hat mit einem Lichtblattmikroskop, das mit Licht eine Probe virtuell in dünnste Schichten zerschneidet, Ebene für Ebene in einem Zebrafisch-Herzen aufgenommen. Die einzelnen Filme wurden dann am Computer zu einem einzigen 3D-Film des schlagenden Herzens zusammengefügt.

Zudem ist es den Dresdner Forschern gelungen, das Herz eines sich entwickelnden Zebrafischs mit Hilfe von Licht zum Stehen zu bringen – dazu werden die Zellen so verändert, dass sie auf Licht reagieren. Dem Fischembryo schadet dies übrigens nicht, er kann einen Herzstillstand von ein paar Stunden ohne Probleme überstehen.

“Anhand der Aufnahmen können wir nun einen gesamten Herzschlag in Zeitlupe genau beobachten, mit allen Details in den charakteristischen Herzbestandteilen”, so Michaela Mickoleit, Doktorandin im Labor von Jan Huisken. So lassen sich nun die Kontraktion des Herzen oder der Abstand zwischen Herzmuskel und Herzinnenwand während eines Herzschlags genauer bestimmen und analysieren. Indem die Forscher mit der Belichtungszeit und der Vergrößerung experimentierten, konnten sie eine bessere Auflösung erreichen und kleinste Details wie die Bestandteile des Zellskeletts, die sogenannten Aktin-Fasern, oder die Sarkomere – die kleinesten Einheiten einer Muskelfibrille – sichtbar machen.

Mit einer schnell verformbaren, flüssigen Linse haben sich die Forscher schließlich noch andere Phänomene des Herzens genauer angeschaut. Erstmals ist es damit gelungen, kranke Herzen mit einer Herzrhythmusstörung zu beobachten.

Mit diesen technologischen Errungenschaften lässt sich ein sich entwickelndes lebendiges Herz beobachten – ob mit in Super-Zeitlupe abgespielten Filmen oder mit hochaufgelösten Standbildern. Die Arbeiten geben damit komplett neue Einsichten in den zellulären Aufbau eines schlagenden Herzens und bringen mit diesem neuen Wissen auch Chancen auf neue Ansätze, um angeborene Herzfehler zu therapieren.

Ansprechpartner

Florian Frisch

Originalpublikation

 
M. Mickoleit, B. Schmid, M. Weber, F.O. Fahrbach, S. Hombach, S. Reischauer, J. Huisken
High-resolution reconstruction of the beating zebrafish heart.
Nature Methods, 20. Juli 2014

Florian Frisch | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8313107/herz_zebrafisch_3d

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie