Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harnwegsinfektionen: Wie sich Bakterien bei uns einnisten

07.03.2016

Fast jede zweite Frau leidet mindestens einmal in ihrem Leben an einer Blasenentzündung. Und auch Männer trifft es gelegentlich. In achtzig Prozent der Fälle ist das Darmbakterium E. coli dafür verantwortlich. Es wandert über die Harnröhre zur Blase und löst dort schmerzhafte Entzündungen aus. In der Fachzeitschrift «Nature Communications» berichten Forscher der Universität Basel und der ETH Zürich, wie es dem Keim dank eines Proteins mit ausgeklügelter Schliesstechnik gelingt, sich an der Harnwegsoberfläche anzuheften und so sein Ausschwemmen mit dem Harn zu verhindern.

Viele Frauen wissen aus eigener Erfahrung wie schmerzhaft eine Blasenentzündung ist: Brennen beim Wasserlassen und ständiger Harndrang sind die typischen Symptome. Bei Blasenentzündungen, die oft wiederholt auftreten, ist der Hauptverursacher das Darmbakterium Escherichia coli. Es gelangt von aussen in den Harntrakt, heftet sich an und ruft Entzündungen hervor.


Der Infektionserreger E. coli (grau) hält sich mithilfe des Proteins FimH (gelb/rot), das sich an der Spitze langer Zellfortsätze befindet, an den Zelloberflächen des Harntraktes fest.

Maximilian Sauer, ETH Zürich

Die Forscher um Prof. Timm Maier vom Biozentrum und Prof. Beat Ernst vom Pharmazentrum der Universität Basel, sowie Prof. Rudolf Glockshuber vom Institut für Molekularbiologie und Biophysik der ETH Zürich haben nun herausgefunden, wie es den Bakterien gelingt, sich mit dem Protein FimH beim Urinausscheiden festzuhalten und dennoch die Harnröhre hinauf zu wandern.

Darmbakterium heftet sich mit Protein FimH an Zelloberflächen

Die Krankheitserreger besitzen lange fadenförmige Zellfortsätze an deren Ende das Protein FimH einen winzigen Haken bildet. Dieses Protein, welches sich an Zuckerstrukturen auf den Zelloberflächen des Harntraktes heftet, besitzt eine besondere Eigenschaft: Es bindet umso fester an die Zuckermoleküle, je stärker am Bakterium gezogen wird. Bei der Harnausscheidung entstehen durch den Flüssigkeitsstrom starke Zugkräfte, unter denen FimH das Bakterium so vor dem Ausschwemmen schützt.

«Durch die Kombination verschiedener biophysikalischer und biochemischer Methoden konnten wir das Bindungsverhaltens von FimH in bisher unerreichter Genauigkeit aufklären», so Glockshuber. In ihrer Studie zeigen die Wissenschaftler nun erstmals, wie mechanische Kräfte die Bindungsstärke von FimH regulieren.

«Das Protein FimH besteht aus zwei Teilen, wobei der zweite, nicht-zuckerbindende Teil steuert, wie fest der erste an die Zuckermoleküle bindet», erläutert Maier. «Wenn beide Teile nun durch den Harnfluss auseinandergezogen werden, schnappt die Zuckerbindungsstelle zu. Lassen die Zugkräfte jedoch nach, öffnet sich die Bindungstasche. Jetzt können sich die Bakterien lösen und die Harnröhre hinauf wandern.»

Arzneistoffe gegen FimH zur Bekämpfung von Harnwegsinfektionen

Harnwegsinfektionen sind der zweithäufigste Grund für die Verschreibung von Antibiotika. Doch in Zeiten von zunehmenden Resistenzen rückt die Suche nach alternativen Behandlungsstrategien immer mehr in den Fokus. Zur Vorbeugung und Bekämpfung von E. coli-Infektionen wären Arzneistoffe, die bereits das erste Anheften von Bakterien mittels FimH in den Harnwegen blockieren, eine geeignete Alternative, weil damit der Einsatz von Antibiotika oft überflüssig würde.

Damit eröffnet sich die Möglichkeit, den hohen Antibiotikaeinsatz zu senken und der Entstehung von Resistenzen vorzubeugen. Prof. Ernst vom Pharmazentrum der Universität Basel beschäftigt sich seit mehreren Jahren intensiv mit der Entwicklung von FimH-Antagonisten. Die Resultate zur Funktionsweise von FimH werden diese Anstrengungen unterstützen und entscheidend zur Identifizierung eines Wirkstoffes beitragen.

Originalbeitrag
Maximilian M. Sauer, Roman P. Jakob, Jonathan Eras, Sefer Baday, Deniz Eriş, Giulio Navarra, Simon Bernèche, Beat Ernst, Timm Maier, Rudi Glockshuber
Catch-bond mechanism of the bacterial adhesin FimH
Nature Communications (2016), doi: 10.1038/ncomms10738

Weitere Auskünfte
Prof. Dr. Timm Maier, Universität Basel, Biozentrum, Tel. +41 61 267 21 76, E-Mail: timm.maier@unibas.ch
Prof. Dr. Rudolf Glockshuber, ETH Zürich, Institut für Molekularbiologie und Biophysik, Tel. +41 44 633 68 19, E-Mail: rudi@mol.biol.ethz.ch
Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Harnwegsinfektionen-Wie-sich-...

Katrin Bühler | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE