Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grünalgen wackeln sich in den Takt

23.10.2013
Max-Planck-Forscher in Dresden erklären, wie Algen ihre Schwimmarme synchronisieren

Der Schlag von Geißeln ist ein Grundprinzip für Bewegungen im Zellkosmos. Wie aber mehrere der kleinen Zellschwänze synchronisiert werden, war bisher ungewiss.


Die Grünalge ist ein Mikro-Brustschwimmer. Mechanische Kräfte halten ihre beiden Schwimmarme im Takt: Deren Schwimmzüge verlangsamen oder beschleunigen sich, je nachdem wie die Zelle beim Schwimmen wackelt.

© MPI f. molekulare Zellbiologie und Genetik, Dresden

Dresdner Max-Planck-Forscher vom Max-Planck-Institut für molekulare Zellbiologie und Genetik und vom Institut für Physik komplexer Systeme haben nun zeigen können, wie die Grünalge Chlamydomonas ihre beiden Schwimmarme durch eine raffinierte Wackelbewegung im Gleichtakt hält.

Dazu erarbeiteten die Wissenschaftler erst ein theoretisches Modell, dass sie dann in Experimenten mit dem Mikro-Brustschwimmer belegen konnten: Geraten die beiden Schwimmarme einmal außer Takt, beginnt die Zelle zu wackeln. Dadurch verlangsamen oder beschleunigen sich wiederum deren Schwimmzüge.

Der daraus resultierende Synchronisations-Mechanismus beruht allein auf der Kopplung zwischen den beiden Bewegungen, der des Körpers und der der Geißeln; spezielle Sensoren oder chemische Signale sind nicht nötig.

„Eine Alge ist ein wunderbares Modell für unsere Fragestellung, denn sie zeigt uns mit ihren zwei Schwimmarmen recht übersichtlich, wie mehrere Geißeln allein durch mechanische Kräfte synchronisiert werden“, sagt Benjamin Friedrich vom Max-Planck-Institut für Physik komplexer Systeme, der die Arbeiten geleitet hat. Wie also Zehntausende von molekularen Motoren zusammenarbeiten, um Geißeln in Bewegung und in den richtigen Takt zu bringen, ist höchst interessant, da dies etlichen Vorgängen zu Grunde liegt: „Die kleinen Zellfortsätze sind ein Bestseller der Natur, sie treiben Spermien an, bilden große Transportteppiche im Eileiter oder den Atemwegen“, erklärt Friedrich.

Die gerade mal zehn Mikrometer großen Zellfortsätze schlagen ungefähr 30-mal pro Sekunde. In einer flachen Beobachtungskammer ließen die Forscher die einzellige Grünalge Chlamydomonas vor ihren Mikroskoplinsen herumschwimmen – und werteten dann die Schwimm- und Biegebewegungen in den Mikroskopiefilmen aus:

„Aus diesen Filmen können wir alle mechanischen Kräfte präzise rekonstruieren“, so Friedrich. Gezeigt hat sich: Wird die Last größer, schlägt die Geißel langsamer, genau wie der Motor eines Autos, welches einen Anstieg bewältigen muß. Die Kraft und Schnelligkeit des Schlages sind also an die Bewegung des Körpers gekoppelt. Diese Last-Abängigkeit synchronisiert die Schläge der beiden Geißeln, ohne dass es spezieller Sensoren oder chemischer Signale bedarf.

Ansprechpartner

Dr. Veikko Geyer
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-2891
E-Mail: geyer@­mpi-cbg.de
Dr. Benjamin Friedrich
Telefon: +49 351 871-2413
E-Mail: ben@­pks.mpg.de
Originalpublikation
Veikko F. Geyer, Frank Jülicher, Jonathon Howard, Benjamin M. Friedrich
Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga

PNAS, 21. Oktober 2013

Dr. Veikko Geyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7579240/gruenalgen_geisseln

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie