Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Große Geräte für die Untersuchung kleiner Strukturen

27.10.2008
Professuren Anorganische Chemie sowie Koordinationschemie erhalten aus Mitteln des Hochschulbauförderungsgesetzes Laborgeräte für zwei sich ergänzende Analytikmethoden im Wert von insgesamt 700.000 Euro

Die Strukturen chemischer Verbindungen - sowohl in Lösungen als auch in Festkörpern - zu kennen, ist Voraussetzung für Chemiker, um Bindungsverhältnisse zu analysieren sowie Rückschlüsse auf die chemische Reaktivität und die physikalischen Eigenschaften zu ziehen.

Diesen Strukturen können Chemiker der TU Chemnitz künftig mit Hilfe zweier sich ergänzender Analytikmethoden auf den Grund gehen: Im Frühjahr 2008 erhielten die Professuren Anorganische Chemie sowie Koordinationschemie insgesamt 700.000 Euro durch das Hochschulbauförderungsgesetz (HBFG), um zwei Großgeräte zu beschaffen. Inzwischen konnten ein hochauflösendes Multikern-NMR-Spektrometer - für die Analyse von Molekülen in Lösung - und ein Transmissionsröntgenpulverdiffraktometer - für die Analyse von Festkörpern - in Betrieb genommen werden. "Die chemischen und physikalischen Eigenschaften einer Substanz in Lösung und im Festkörper können sich stark unterscheiden, sodass erst der Einsatz beider Methoden zu einer umfassenden Strukturanalyse führt", erklärt Prof. Dr. Heinrich Lang, Inhaber der Professur Anorganische Chemie. Auch für theoretische Chemiker sind die Ergebnisse dieser Analyseverfahren wichtig; sie brauchen sie als Startbedingungen für Modellrechnungen.

Die hochauflösende Kernresonanzspektroskopie ist eine Methode zur zerstörungsfreien Aufklärung der Struktur und Dynamik von kleinen Molekülen bis zu Makromolekülen und Proteinen in Lösungen. Im Vordergrund stehen dabei Untersuchungen zur Wechselwirkung zwischen Molekülen und zu deren strukturellen Aufbau. "Mit dem neuen Gerät können auf Grund der hohen Feldstärke bisher bei uns nicht mögliche spezielle Messungen von beispielsweise extrem schwer löslichen Verbindungen, komplizierten Makromolekülen oder auch von Verbindungen mit schwer messbaren Kernen im unteren Frequenzbereich durchgeführt werden", erklärt Lang und ergänzt: "Die Anschaffung eines solchen Spektrometers mit 500 Megahertz ist in Kombination mit dem ebenfalls neu angeschafften Röntgendiffraktometer eine Investition in die Zukunft des Universitätsstandortes Chemnitz." So werden die Geräte auch eingesetzt, um den durch steigende Studierendenzahlen im Fach Chemie wachsenden Messbedarf zu bewältigen. Für die Forschung ermöglicht das NMR-Spektrometer unter anderem Tief- und Hochtemperaturmessungen von minus 100 bis plus 150 Grad Celsius. "Vor allem sind die Messungen in wesentlich kürzerer Zeit, mit geringerem Aufwand und besserer Auflösung möglich, als dies mit unserer bisherigen Laborausstattung der Fall war", erläutert Lang.

Die Röntgenpulverdiffraktometrie ermöglicht die Untersuchung der Zusammensetzung und der Struktur von kristallinen Stoffen. Handelt es sich bei der Probe um eine bekannte Reinsubstanz, können die Ergebnisse mit Hilfe von Datenbanken für bekannte Substanzen identifiziert werden. Besteht die Probe aus mehreren bekannten Substanzen, kann darüber hinaus auch der jeweilige Anteil quantitativ bestimmt werden. "Viele für die Festkörperforschung und Materialwissenschaften interessante Verbindungen sind noch nicht strukturell charakterisiert worden. Dies überrascht, wenn man bedenkt, wie eng der Zusammenhang zwischen Kristallstruktur auf der einen und physikalischen sowie chemischen Eigenschaften auf der anderen Seite ist", so Prof. Dr. Michael Mehring, Inhaber der Professur Koordinationschemie. "Die Entwicklung neuer Materialien basierend auf dem Konzept des Crystal Engineering, das die Kenntnis möglichst vieler verwandter Kristallstrukturen voraussetzt, ist aus der Katalysator-, Keramik-, Polymer- und Arzneimittelforschung nicht mehr wegzudenken", erläutert Mehring die Bedeutung des Forschungsgebietes, für das seiner Professur jetzt ein leistungsfähiges Transmissionspulverdiffraktometer zur Verfügung steht, wodurch sich unter anderem viele Messungen beschleunigen lassen und auch Untersuchungen bei sehr kleinen Substanzmengen möglich werden. Darüber hinaus können temperaturabhängige Kristallisationsprozesse, Phasenumwandlungen und Zersetzungsprozesse im Temperaturbereich von minus 100 bis 1000 Grad Celsius studiert werden.

Weitere Informationen erteilen Prof. Dr. Heinrich Lang, Telefon 0371 531-21210, E-Mail heinrich.lang@chemie.tu-chemnitz.de, und Prof. Dr. Michael Mehring, Telefon 0371 531-21250, E-Mail michael.mehring@chemie.tu-chemnitz.de

Katharina Thehos | idw
Weitere Informationen:
http://www.tu-chemnitz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie