Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Größer oder heller? Wie Nervenzellen in der Netzhaut des Auges Bilder analysieren

27.01.2012
Grundlagenforschung zum Sehen: Forscher der Universitätsmedizin Göttingen und des Max-Planck-Instituts für Neurobiologie Martinsried finden Mechanismen in den Nervenzellen des Auges, die beim Sehen zwischen kleinen, kontrastreichen und großen, kontrastarmen Objekten unterscheiden lassen.

Sehen beginnt, wenn Licht auf die Netzhaut des Auges trifft. Sofort werden Nervenzellen in der Netzhaut aktiv. Spezialisierte Zellen in der Netzhaut, die Photorezeptoren, nehmen dabei das Licht auf, wandeln es in elektrische Signale um und senden diese Information über ihre Synapsen an andere Nervenzellen in der Netzhaut weiter.


Blick durchs Mikroskop: Foto der für die Messung verwendeten Messelektroden mit retinalem Gewebe im Hintergrund. Foto: umg/Gollisch


Schematische Darstellung für die Umwandlung eines visuellen Bildes in die elektrischen Signale der Netzhaut sowie schematisches Netzwerk der Nervenzellen. Abbildung: umg/Gollisch

Bisher wusste man: Jede Zelle ist dabei für einen kleinen Ausschnitt des visuellen Gesichtsfeldes zuständig. Wie aber unterscheiden die Zellen, ob das Licht innerhalb dieses Ausschnitts von einem kleinen, hellen Objekt ausgeht, oder aber von einem großen, signalschwachen Objekt ausgesendet wird?

Forscher der Universitätsmedizin Göttingen und des Max-Planck-Instituts für Neurobiologie Martinsried konnten nun zeigen, dass es hierzu zwei unterschiedliche Arten von Nervenzellen in der Netzhaut des Auges gibt. Die eine Art von Nervenzellen ist darauf spezialisiert, kleine Objekte zu erkennen. Andere Nervenzellen sind Experten beim Erkennen großer Objekte. Zusammen stellen diese Nervenzellen dem Gehirn die nötige Information zur Verfügung, um das Sehen und Unterscheiden von Objekten zu ermöglichen.

Die Untersuchungen zur Grundlagenforschung des Sehens unter der Leitung von Prof. Dr. Tim Gollisch, Professor für "Sensory Processing in the Retina" in der Abteilung Augenheilkunde und Forscher im Sonderforschungsbereich 889 "Zelluläre Mechanismen sensorischer Verarbeitung" an der Universitätsmedizin Göttingen, wurden jetzt im renommierten Wissenschaftsmagazin "Neuron" veröffentlicht.

Originalveröffentlichung: Bölinger D, Gollisch T (2012). Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina. Neuron 73: 333-346, doi: 10.1016/j.neuron.2011.10.039

Entdeckt haben die Wissenschaftler aus Martinsried und Göttingen die beiden unterschiedlichen Arten von Nervenzellen bei ihren Untersuchungen in der Netzhaut von Salamandern. Dabei fanden die Forscher auch heraus, wie diese beiden Arten von Nervenzellen ihre jeweiligen Aufgaben erledigen: "Zellen, die für große Objekte zuständig sind, erhalten zusätzliche hemmende Signaleingänge. Die hemmende Wirkung entfaltet sich bei starkem Kontrast, also bei besonders hellen Objekten vor dunklem Hintergrund oder umgekehrt", so Prof. Dr. Tim Gollisch. "Daher sind kleine, kontrastreiche Objekte nicht gut geeignet, um diese Zellen zu aktivieren. Stattdessen führen große, kontrastärmere Objekte zu vermehrtem Feuern der Nervenzellen, da nun keine Hemmung auftritt. Bei den Nervenzellen, die für kleine Objekte zuständig sind, fehlen hingegen diese hemmenden Signale, sodass die Zellen schon auf kleine, aber kontrastreiche Objekte stark reagieren."

Dem Salamander selbst erlaubt diese Spezialisierung der Nervenzellen in seinem Auge möglicherweise, so vermuten die Forscher, die Unterscheidung zwischen kleinen Beutetieren und größeren Fressfeinden, die es auf den Salamander abgesehen haben. Auch beim Menschen könnte eine vergleichbare Unterscheidung zwischen kleinen und großen Objekten auf ähnliche Weise schon in der Netzhaut des Auges stattfinden. Sie würde beispielsweise für eine schnelle Reaktion sorgen, wenn aus dem Augenwinkel her Gefahr droht.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Augenheilkunde
AG Sensory Processing in the Retina
Prof. Dr. Tim Gollisch, Telefon 0551 / 39-13542
tim.gollisch@med.uni-goettingen.de

Stefan Weller | idw
Weitere Informationen:
http://www.retina.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie