Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goethe-Uni erhält weltweit erstes 950 Megahertz Spektrometer

22.09.2008
NMR-Großgeräte locken Forscher nach Frankfurt

Seitdem das Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) an der Goethe-Universität zwei neue Großgeräte im Wert von insgesamt etwa 10 Millionen Euro erhalten hat, verzeichnet es einen noch regeren Zulauf an Gastwissenschaftlern als zuvor.

Im Rahmen des EU-NMR Netzwerkes buchen Forscher zunehmend Messzeiten in Frankfurt, um Fragen zu beantworten, die sie mit den Geräten in ihren eigenen Laboratorien nicht lösen können. Das 950 Megahertz NMR-Spektrometer für die Aufklärung von Struktur und Dynamik von Biomakromolekülen wie Proteinen und RNA in flüssiger Umgebung ist das weltweit erste von der Firma Bruker ausgelieferte Gerät.

Das Besondere daran ist die Stärke seines Magnetfeldes, das millionenfach stärker ist als das Magnetfeld der Erde. Als Faustregel gilt: Je stärker das Feld, desto größer die Moleküle, die man damit untersuchen kann. Gleiches gilt für das neue 850 Megahertz NMR-Spektrometer zur Untersuchung fester Proteine, wie sie in Zellmembranen vorliegen. Dieses von der Deutschen Forschungsgemeinschaft finanzierte Gerät gehört zu den leistungsfähigsten NMR Spektrometern weltweit und wird von mehreren deutschen Universitäten genutzt werden. Das 950 Megahertz Geräte konnte dank einer Mischfinanzierung aus Mitteln des Landes Hessen, der Europäischen Union und des Bundes erworben werden.

Das Magnetfeld dient in der NMR-Spektroskopie dazu, die Kernspins der zahlreichen Wasserstoff-Atome in Biomolekülen gleich winzigen Magnetnadeln auszurichten. Stört man diese Ordnung durch langwellige Radiostrahlen einer bestimmten (Resonanz-)Frequenz, "klappen" die Kernspins kurzzeitig in eine andere, quantenmechanisch erlaubte Richtung um. Von den benachbarten Atomen im Molekül hängt es ab, wie schnell die Spins sich "erholen" und unter Aussendung eines "Echos" der eingestrahlten Radiowellen in den Ausgangszustand zurückkehren. Je größer das Molekül ist, desto mehr Signale sendet es aus, teilweise überlagern sich diese. Verstärkt man aber das Magnetfeld, verbessert sich die nicht nur die Auflösung, sondern auch das Signal-zu-Rausch-Verhältnis.

Seitdem das 850 MHz Hochfeld-Festkörper-NMR Spektrometer im Labor von Prof. Clemens Glaubitz steht, ist seine Arbeitsgruppe um drei Gastwissenschaftler angewachsen. Als Stipendiat der Alexander-von-Humboldt-Stiftung kam der Physiker Dr. Jun Yang vom Institut für Physik und Mathematik der Chinesischen Akademie der Wissenschaften in Wuhan. Sein Hauptinteresse gilt der dreidimensionalen Struktur von Proteorhodpsin, einer bakteriellen, lichtgetriebenen Protonenepumpe, die möglicherweise für den Energiehaushalt der Ozeane eine große Rolle spielt.

Die hervorragende Ausstattung hat auch die Chemikerin Dr. Andrea Lakatos von der Universität Szeged, Ungarn, bewogen, im Rahmen des Marie-Curie-Programms der EU im Labor von Glaubitz zu arbeiten. Ihr Forschungsgebiet sind Proteine, die eine wichtige Rolle beim Mechanismus der Antibiotika-Resistenz spielen. Ebenfalls gefördert durch Mittel der EU im Rahmen eines internationalen Programms zur Erforschung der Protein-Membraninteraktion hat die Biochemikerin Dr. Lubica Aslimovska von der Universität Oxford kürzlich ihre Arbeit aufgenommen. Ihre Aufgabe ist es, die Empfindlichkeit vorhandener NMR-Spektrometer zu verbessern.

Das 950 Megahertz Spektrometer wird insbesondere dazu eingesetzt, größere Biomakromoleküle und deren Komplexe zu untersuchen. Hierzu gehören zum Beispiel Strukturuntersuchungen an Membranproteinen in Lösung wie dem Rhodopsin, einem Schlüsselprotein für das Sehen im Auge. Die Untersuchung von Protein-Protein, Protein-Ligand und Protein-RNA Wechselwirkungen stellt einen weiteren Forschungsbereich dar. Hier ermöglicht der Einsatz des 950 Megahertz Spektrometers beispielsweise neue Einsichten in die Komplexe von Kinasen mit ihren Liganden. Einen weiteren Schwerpunkt stellen kinetische Untersuchungen dar. Die Forscher können zeitaufgelöst beobachten wie sich die Struktur einer RNA nach der Zugabe eines Liganden verändert oder wie ein Protein während der Proteinfaltung seine dreidimensionale Struktur einnimmt. Um die Vorgänge während und nach der Proteinsynthese zu verstehen, wird das Spektrometer auch dazu genutzt, unstrukturierte Proteine zu analysieren. Diese stellen den Startpunkt der Proteinfaltung dar und spielen eine Rolle bei Prionenkrankheiten wie der Creutzfeldt-Jakob-Krankheit.

Informationen:

Prof. Harald Schwalbe, Zentrum für biomolekulare Magnetische Resonanz, Campus Riedberg, Tel.: (069)-798-29737, schwalbe@ nmr.uni-frankfurt.de.

Prof. Clemens Glaubitz, Zentrum für biomolekulare Magnetische Resonanz, Institut für Biophysikalische Chemie, Campus Riedberg, Tel.: (069)-798-29927, glaubitz@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 45 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-Universität als eine der forschungsstärksten Hochschulen Deutschlands.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

nachricht CO2-neutraler Wasserstoff aus Biomasse
22.06.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie

Innovative High Power LED Light Engine für den UV Bereich

22.06.2017 | Physik Astronomie

Wie Menschen Schäden an Gebäuden wahrnehmen

22.06.2017 | Architektur Bauwesen