Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gliazellen versorgen Nervenfasern mit energiereichen Stoffwechselprodukten

04.05.2012
Gliazellen geben Metabolite an Nervenzellen weiter

Rund hundert Milliarden Nervenzellen im Gehirn des Menschen sorgen dafür, dass wir denken, fühlen und handeln können: Durch lange Nervenfasern, die sogenannten Axone, übertragen sie elektrische Impulse in weit entfernte Teile des Gehirns und des Körpers.


Elektronenmikroskopische Querschnittsaufnahme von Nervenzellfortsätzen (Axonen) des Sehnervs. Die Axone sind von speziellen Gliazellen umgeben, den Oligodendrozyten, die sich in mehreren Lagen um die Axone wickeln. Zwischen den Axonen befinden sich Fortsätze von Astrozyten, einer weiteren Art von Gliazellen. © K.-A.Nave/MPI f. experimentelle Medizin

Diese Kommunikation erfordert eine große Menge an Energie, die die Nervenzellen nicht allein aufbringen müssen. Ihnen zur Seite stehen die Gliazellen, die sie zum einen mit einer elektrisch isolierenden Myelinscheide umgeben, sie zum anderen aber auch – so die neuesten Ergebnisse – mit Metaboliten als „Brennstoff“ versorgen können.

Die Arbeitsgruppe von Klaus-Armin Nave vom Max-Planck-Institut für experimentelle Medizin in Göttingen hat herausgefunden, auf welche Weise die Gliazellen im Gehirn ihre assoziierten Axone unterstützen und langfristig am Leben erhalten.

Oligodendrozyten sind eine Gruppe hochspezialisierter Gliazellen im zentralen Nervensystem. Sie sind für die Bildung der fettreichen Myelinscheide zuständig, die die Nervenfasern als eine Isolierschicht umgibt. Ein Vergleich mit Elektrokabeln und ihrer Ummantelung bietet sich an, doch hat das Myelin weit mehr Fähigkeiten als die Isolierschicht von Elektrokabeln: Es erhöht die Leitungsgeschwindigkeit der Axone und senkt zudem den laufenden Energieverbrauch. Wie wichtig das Myelin für ein funktionierendes Nervensystem ist, zeigen Erkrankungen, die mit einer defekten Isolierschicht einhergehen, wie beispielsweise die Multiple Sklerose

Interessanterweise geht jedoch die Funktion der Oligodendrozyten über diese Bereitstellung von Myelin weit hinaus. Klaus-Armin Nave und sein Team am Max-Planck-Institut in Göttingen konnten bereits vor Jahren zeigen, dass gesunde Gliazellen auch für das langfristige Überleben der Axone selbst essenziell sind, unabhängig von der Myelinisierung. „Bisher war uns nicht klar, auf welche Weise die Oligodendrozyten ihre assoziierten Axone funktionell unterstützen“, erklärt Nave. In einer neuen Studie konnten die Forscher nun zeigen, dass die Gliazellen unter anderem am Energienachschub in den Nervenfasern beteiligt sind. „Man könnte sagen, sie sind die Tankstellen auf der Datenautobahn der Axone“, erklärt Nave die Ergebnisse.

Doch wie funktioniert das Tanken der Energie? Stehen die Oligodendrozyten und Axone metabolisch in Verbindung? Um das zu ermitteln, setzte Ursula Fünfschilling genetisch veränderte Mäuse in ihrer Studie ein: Bei ihnen wurde die Funktion der Mitochondrien gezielt in den Oligodendrozyten gestört, indem dort das Gen Cox10 inaktiviert wurde. In den Mitochondrien finden die letzten Schritte des Zuckerabbaus statt und es wird Energie gewonnen – ein Prozess, der als Atmungskette bekannt ist. Fehlt ein Glied dieser Kette hier die Cytochrom-Oxidase (COX), die nur mit dem Enzym Cox10 funktionstüchtig ist, verlieren die Gliazellen nach und nach die Fähigkeit, mit Hilfe ihrer Mitochondrien zelluläre Atmung zu betreiben. „Ohne eigene Atmung sollten die manipulierten Gliazellen des Nervensystems absterben“, erklärt die Wissenschaftlerin. Es sei denn, es genügt ihnen die geringe Energiegewinnung aus der Spaltung von Zucker zum Pyruvat beziehungsweise zur Milchsäure, ein Prozess, der als Glykolyse bezeichnet wird.

Und tatsächlich konnten die Wissenschaftler an ihren Mäusen genau das beobachten: Das Myelin der Tiere wurde zunächst normal ausgebildet. Der dann einsetzende Verlust der mitochondrialen Atmungskette schien den Gliazellen im zentralen Nervensystem nichts anzuhaben. Selbst nach über einem Jahr waren keinerlei neurodegenerative Veränderungen im Gehirn zu beobachten. Die Wissenschaftler vermuten nun, dass die mutierten Oligodendrozyten während der Myelinisierung des Gehirns in den ersten Lebenswochen – eine Phase größten Energiebedarfs – noch auf viele intakte Mitochondrien zurückgreifen. Später scheinen alle reiferen Oligodendrozyten die mitochondriale Atmung ohnehin herunterzufahren und auf eine Energiegewinnung durch erhöhte Glykolyse zu setzen. Dies hat in gesunden Gliazellen den Vorteil, dass die beim Abbau von Glukose anfallenden Stoffwechselprodukte als Bausteine für die Synthese des Myelins genutzt werden können. Darüber hinaus kann die in Oligodendrozyten anfallende Milchsäure an die Axone abgegeben werden, um dort mit Hilfe eigener axonaler Mitochondrien Energie zu gewinnen.

„Der völlige Verlust der Atmungskette in den gezielt veränderten Oligodendrozyten hebt wahrscheinlich einen natürlicherweise ablaufenden Entwicklungsschritt hervor“, erklärt Nave die Beobachtungen. Der Verlust glialer Mitochondrien führt also nicht zu einer schlechteren Versorgung der Axone, sondern im Gegenteil allenfalls zu einem Überangebot an verwertbarer Milchsäure. Die betroffenen Nervenbahnen selbst haben nachweislich kein Problem, die Milchsäure von Oligodendrozyten zu verstoffwechseln. Transportproteine sorgen für den raschen Transfer der Milchsäure zwischen Oligodendrozyten und Axon.

Dieses zunächst unerwartete Resultat führt zu einem neuen Verständnis der Rolle von Oligodendrozyten: Neben ihrer bekannten Bedeutung für die Myelinisierung können sie den Axonen unmittelbar Glukoseprodukte zur Verfügung stellen, die mit Hilfe axonaler Mitochondrien in Zeiten hoher Aktivität der Nervenzellen als Brennstoff genutzt werden. Diese Kopplung von Gliazellen könnte unter anderem erklären, warum bei vielen Myelinerkrankungen, wie zum Beispiel auch der Multiplen Sklerose, die betroffenen demyelinisierten Axone häufig irreversiblen Schaden nehmen.

Kontakte

Prof. Klaus-Armin Nave Ph.D.
Max-Planck-Institut für experimentelle Medizin
Telefon: +49 551 3899-757
Fax: +49 551 3899-758
Email: nave@­em.mpg.de
Dr. Ursula Fünfschilling
Max-Planck-Institut für experimentelle Medizin
Telefon: +49 55 1389-9131
Email: fuenfschilling@­em.mpg.de
Originalpublikation
Ursula Fünfschilling, Lotti M. Supplie, Don Mahad, Susann Boretius, Aiman S. Saab, Julia Edgar, Bastian G. Brinkmann, Celia M. Kassmann, Iva D. Tzvetanova, Wiebke Möbius, Francisca Diaz, Dies Meijer, Ueli Suter, Bernd Hamprecht, Michael W. Sereda, Carlos T. Moraes, Jens Frahm, Sandra Goebbels & Klaus-Armin Nave
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
Nature, 29. April 2012

Prof. Klaus-Armin Nave Ph.D. | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5765715/gliazellen_metabolite_nervenzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie wirksam sind Haftvermittler? Fraunhofer nutzt Flüssigkeitschromatographie zur Charakterisierung

17.10.2017 | Materialwissenschaften

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie