Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Geometrie der Krebszelle

12.11.2013
Bösartige und gesunde Zellen weisen charakteristische fraktale Muster auf, anhand derer sie sich unterscheiden lassen

Ein neuer Ansatz lässt auf eine Methode hoffen, mit der sich Krebszellen künftig schneller und zuverlässiger unterscheiden lassen könnten. Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Universität Heidelberg haben festgestellt, dass sich Zellen sehr genau mithilfe der fraktalen Geometrie charakterisieren lassen.


Je ausgefranster, desto bösartiger: Eine Tumorzelle lässt sich an ihrer fraktalen Geometrie, genauer an ihrem Fraktalisierungsgrad, erkennen. Dass die rechte Zelle einen höheren Fraktalisierungsgrad aufweist als die linke, zeigt ihre höhere Aggressivität.

© MPI für Intelligente Systeme


Auf den Rang kommt es an: Die Bilder zeigen ein und dieselbe Zelle, einmal in einer reflexionsmikroskopischen (rechts) und einmal in einer lichtmikroskopischen (links) Aufnahme. Zusätzlich werden in der reflexionsmikroskopischen Aufnahme Zellausstülpungen sichtbar, welche in der lichtmikroskopischen Aufnahme nicht erkennbar sind.

© MPI für Intelligente Systeme

Mit dieser Theorie werden Objekte beschrieben, deren Struktur im Kleinen ihrer Gestalt im Großen ähnelt. Krebszellen können ihr Wachstum und damit ihre Gestalt verglichen mit gesunden Zellen schlechter regulieren. Die spezielle fraktale Geometrie einer Zelle wird damit zu einem Marker für den Zelltyp.

Daher lässt sich der Erkrankungsgrad einer Zelle mit dieser Mathematik, kombiniert mit einer geschickten Bilderkennung, analysieren. Die Forscher untersuchten, in welcher statistischen Verteilung welche Strukturdetails auf der Oberfläche von unterschiedlichen Tumorzellen auftreten. Auf diese Weise konnten sie Krebszellen genauer erkennen, als das mit der bisher gängigen immunhistologischen Methode möglich ist, und zwischen Zellen verschiedener Tumore unterscheiden.

Den Begriff Fraktal gibt es noch nicht einmal seit 40 Jahren, fraktale Strukturen aber schon seit Urzeiten. Denn die Blätter eines Farns, der Romanesco-Blumenkohl und Meeresküsten sind so aufgebaut, dass sich ihre geometrischen und topographischen Eigenschaften wiederholen, wenn man sie stärker vergrößert. Auch die Auswüchse und Ausstülpungen auf den Oberflächen von Zellen zeigen solche selbstähnlichen Muster.

Wie Forscher um Joachim Spatz, Direktor am Max-Planck-Institut für Intelligente Systeme in Stuttgart und Professor an der Universität Heidelberg, nun festgestellt haben, lassen sich Tumorzellen und gesunde Zellen anhand ihrer fraktalen Geometrie unterscheiden.

Die Wissenschaftler vergrößerten die Ränder von Zellen der Bauchspeicheldrüse und analysierten deren Unregelmäßigkeiten. Indem sie diese mathematisch erfassten, bestimmten sie die fraktale Dimension des Zellrandes, die ein Maß für die statistische Verteilung der Unregelmäßigkeiten ist. Krebszellen weisen einen höheren Fraktalisierungsgrad auf als gesunde Zelle, da sich beim unkontrollierten Tumorwachstum sehr unregelmäßige Ausbuchtungen verschiedener Größe auf der Zelloberfläche bilden. Die Forscher erkannten an der fraktalen Dimension aber nicht nur, ob eine Tumorzelle vorlag, sondern bestimmten mit 97prozentiger Sicherheit auch, um welchen von zwei unterschiedlich bösartigen Bauchspeicheldrüsentumoren es sich handelt. „Auf diese Weise lassen sich Krebszellen sehr viel genauer und schneller unterscheiden als mit der bisher gängigen Methode“, sagt Joachim Spatz.

Krebszellen zu identifizieren, ist bisher unsicher und zeitaufwendig

Bisher werden Krebszellen und ihr Entstehungsort im Körper identifiziert, indem eine per Biopsie entnommene Zellprobe mit bestimmten Antikörpern und Biomarkern eingefärbt wird. Die Färbemethode hat jedoch Nachteile: Sie erfordert zahlreiche Einzelschritte mit kostspieligen Antikörpern und ist daher zeitaufwendig und teuer. Außerdem können die derzeit gebräuchlichen Farbstoffe feinste Unterschiede von Zellen nicht immer sichtbar machen. Daher lässt sich ein Krebs mit dieser Methode nur in 85 Prozent der Proben korrekt diagnostizieren.

Mithilfe der fraktalen Geometrie erkennt das Team von Joachim Spatz Krebszellen nicht nur zuverlässiger, sondern das geht auf diese Weise auch deutlich schneller. Denn die Zellen lassen sich unter einem Mikroskop untersuchen, ohne dafür besonders präpariert werden zu müssen. Um die Details der Zellränder erfassen zu können, verwendet das Team von Joachim Spatz ein Reflexionskontrastmikroskop. Statt die Probe wie ein herkömmliches Lichtmikroskop von unten zu durchleuchten, misst das Mikroskop der Stuttgarter Forscher die Reflexion des Lichtstrahls an der Zelloberfläche. Diese ist unterschiedlich, je nachdem, ob das Licht direkt auf eine Zelle oder zuerst auf wässriges Zellkulturmedium und dann auf eine Zelle trifft. Anhand des reflektierten Lichtes lassen sich selbst winzige Strukturen am Zellrand untersuchen.

„Die fraktale Geometrie der Zelloberflächen zu analysieren, birgt ein sehr großes Potenzial für die klinische Diagnostik“, sagt Spatz. Nun erforschen die Wissenschaftler, wie sich ihre Methode in der Praxis anwenden lässt. Dazu untersuchen sie unterschiedliche bösartige Zelllinien und primäre Zellen, also solche Zellen, die aus menschlichen Organen gewonnen werden und die im Gegensatz zu Tumorzelllinien nur über eine bestimmte Zeitspanne kultiviert werden können. „Der nächste Schritt für uns werden konkrete Kooperationen mit Kliniken sein, um die Methode direkt an relevanten Gewebeproben zu testen“, erklärt Joachim Spatz.

Ansprechpartner
Prof. Dr. Joachim P. Spatz
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3610
Fax: +49 711 689-3612
E-Mail: spatz@­mf.mpg.de
Originalpublikation
Katharina Klein , Timo Maier , Vera C. Hirschfeld-Warneken , and Joachim P. Spatz
Marker-Free Phenotyping of Tumor Cells by Fractal Analysis of Reflection Interference Contrast Microscopy Images

Nano Letters, online veröffentlicht 30. September 2013; DOI: 10.1021/nl4030402

Prof. Dr. Joachim P. Spatz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7606382/krebs_zelle_fraktal?filter_order=L&research_topic=

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften