Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetische Grundlage der Regeneration erforscht

24.11.2011
Konstanzer Wissenschaftler entdecken Molekül, das die Regeneration von amputierten Körperteilen steuert

Die Fähigkeit, Körperteile zu regenerieren, die durch Amputation oder Verletzung verloren wurden, ist im Tierreich weit verbreitet. Warum Menschen die Gabe zur Regeneration nicht besitzen, ist bisher nicht verstanden, daher wird intensiv mit geeigneten Tiermodellen an dieser offenen Frage geforscht.

Biologen der Universität Konstanz konnten anhand des Zebrafisches erstmalig den regulierenden Einfluss von Retinsäure auf Regenerationsprozesse bei Tieren aufzeigen. Damit schließen die Konstanzer Biologen eine seit annähernd drei Jahrzehnten akute Forschungslücke und tragen maßgeblich dazu bei, die molekularen Grundlagen von Regenerationsprozessen besser zu verstehen. Die Forschungsergebnisse wurden jüngst im renommierten Wissenschaftsjournal „Development” veröffentlicht.

„Zebrafische sind Meister auf dem Gebiet der Regeneration, denn ihre Selbstheilungskräfte sind ausgezeichnet: Nicht nur die Flossen, auch der Herzmuskel und andere Organe wachsen nach ihrer Verletzung wieder nach“, beschreibt Privatdozent Dr. Gerrit Begemann, Leiter der Konstanzer Forschungsgruppe, die besondere Eignung von Zebrafischen für die Regenerationsforschung. „Als nicht lebenswichtiges Organ eignet sich die Schwanzflosse ganz hervorragend, um die molekularen Mechanismen der Regeneration zu untersuchen“, führt Begemann weiter aus.

Nicola Blum, Doktorandin in Begemanns Arbeitsgruppe, gelang es erstmals zu zeigen, dass Retinsäure für die Regeneration der Schwanzflosse im Zebrafisch unerlässlich ist. Retinsäure wird von Körperzellen der Tiere und des Menschen aus dem Vitamin A produziert und ist schon lange als wichtiges Molekül bekannt, das gezielt bestimmte Gene aktivieren kann, die für die Entwicklung notwendig sind.

Bevor eine verletzte Flosse regeneriert, wird die Wunde zunächst durch ein mehrschichtiges Wundepithel verschlossen. Gleichzeitig verlieren die Zellen im darunterliegenden Stumpf ihre Identität als ausdifferenziertes Gewebe und bilden einen Verband von Zellen, die sich sehr schnell teilen. Dieser Zellverband wird als Blastema bezeichnet und entsteht ausschließlich in regenerierenden Organen. Die Konstanzer Forscher konnten zeigen, dass bei Fischen, in denen Retinsäure durch einen genetischen Trick abgebaut wird, die Bildung des Blastemas verhindert wird. Somit stockt die Produktion des Vorrats an Zellen, aus denen sich das verlorene Gewebe neu bilden könnte.

Seit 2009 erforscht Nicola Blum als Doktorandin des Graduiertenkollegs „Zell-basierte Charakterisierung krankheitsbedingter Mechanismen der Gewebs-Zerstörung und -Reparatur“ die Regeneration bei Fischen und hatte schon früh entdeckt, dass das Stumpfgewebe innerhalb kürzester Zeit nach der Amputation mit der Produktion von Retinsäure beginnt. Die Konstanzer Forscher stellten die Theorie auf, dass das Molekül das Wachstum des Blastemas ermöglicht. Diese Vorhersage konnten sie bestätigen: Eine künstliche Steigerung der Retinsäurekonzentration erhöhte zugleich auch die Rate der Zellteilungen im Blastema. Einer amerikanischen Forschergruppe war zuvor in Zusammenarbeit mit den Konstanzer Forschern der Nachweis gelungen, dass Retinsäure die Teilung von Zellen des Herzmuskels im Zebrafisch nach einem künstlichen Infarkt anregt. Somit scheint Retinsäure auch bei der Regeneration anderer Organe ein notwendiger wachstumsfördernder Faktor zu sein.

In Flossen, in denen die Regeneration bereits fortgeschritten war, konnten die Forscher eine weitere überraschende Entdeckung machen: Ohne Retinsäure starben die sich teilenden Zellen des Blastemas innerhalb weniger Stunden ab, da Retinsäure das bcl2 Gen positiv reguliert, das Zellen vor der Zerstörung bewahrt. Somit gewährleisten die Zellen des Blastemas ihr eigenes Überleben, indem sie einen Überlebensfaktor produzieren. Ein Mechanismus, der das nachwachsende Gewebe vor Zelltod schützt, wurde bisher keinem der anderen bekannten Signalwege in der Regeneration zugeschrieben.

Der Erfolg der Konstanzer Forscher ist umso beachtenswerter, weil seit mehr als einem Vierteljahrhundert an den Effekten geforscht wird, die künstlich erhöhte Mengen an Retinsäure auf die Regeneration von Gliedmaßen haben. Seit langem war bekannt, dass Salamander unter dem Einfluss von Retinsäure zur sogenannten „Super-Regeneration“ fähig sind und Extremitäten regenerieren, die länger sein können als das verlorene Original. Die aktuelle Arbeit der Konstanzer Forscher zeigt, dass das Molekül das Blastemawachstum fördert, was eine der Voraussetzungen für Super-Regeneration ist. Die neuen Erkenntnisse führen zu einem besseren Verständnis der molekularen Vorgänge während der Regeneration bei Wirbeltieren und könnten zur Aufklärung der Frage beitragen, warum Menschen nur sehr bedingt regenerationsfähig sind.

Originalveröffentlichung:
Blum, N. and Begemann, G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. (2012) Development 139;107-116. doi:10.1242/dev.065391
Der Artikel ist online in einer Vorab-Version verfügbar unter:
http://dev.biologists.org/content/early/2011/11/17/dev.065391.abstract
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
PD Dr. Gerrit Begemann
Universität Konstanz
Lehrstuhl für Zoologie und Evolutionsbiologie
Universitätsstraße 10
78464 Konstanz
Telefon 07531 / 88-2881
E-Mail: Gerrit.Begemann@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie