Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene sind nicht alles - Wie modifizierte Histon-Proteine Gene regulieren

17.09.2010
Bis in die 90er-Jahre nahmen Wissenschaftler an, dass Histone, die häufigsten Proteine im Zellkern, nur für die Organisation und Stabilisierung der DNA verantwortlich sind.

Doch mittlerweile ist klar, dass sie auf vielfältige Weise in die Regulation von Genen eingreifen können. Je nach Veränderung ihrer Grundstruktur aktivieren oder hemmen sie das Ablesen von Genen. Gemeinsam mit Kollegen aus Dresden und den Niederlanden haben Forscher vom Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München jetzt weitere Interaktionspartner in diesem Prozess identifiziert. Erst neueste Methoden der Massenspektrometrie machten dies möglich. (Cell, 17. September 2010)

Die menschliche Erbsubstanz (DNA) liegt nicht ungeordnet in der Zelle vor. Wie um Spulen ist das zwei Meter lange Molekül um spezielle Proteine (Histone) gewickelt, damit es in den Zellkern mit einem Durchmesser von nur 0,006 Millimetern passt. Den so verpackten Komplex aus DNA und Proteinen nennen Forscher Chromatin. Histone bilden jedoch nicht nur das Gerüst des Chromatins, sondern spielen auch eine essentielle Rolle bei der Entscheidung, welche Gene abgelesen und in Proteine übersetzt werden und welche nicht. Obwohl in einem Organismus alle Zellen die gleichen Gene besitzen, werden diese unterschiedlich abgelesen und es entstehen verschiedene Zelltypen mit jeweils anderer Proteinzusammensetzung. Die Wissenschaft, die sich mit diesem Phänomen beschäftigt, heißt Epigenetik. Fehler können zu Störungen in der Entwicklung eines Embryos oder zu Krankheiten wie Krebs führen.

Obwohl Histone eine so bedeutende Rolle in der Genregulation spielen, ist der genaue Mechanismus noch nicht im Detail verstanden. Eine wichtige Rolle spielen Veränderungen in der Struktur der Histone: Durch das Anfügen von chemischen Gruppen werden die Histone so modifiziert, dass sie von unveränderten Histonen unterscheidbar sind. Auf diese Weise können sie eine gezielte Funktion an dieser speziellen Stelle im Genom ausführen. Eine der häufigsten Modifikationen ist die Methylierung, die dazu führt, dass weitere Proteine an die modifizierten Histone binden. So können sie das Ablesen eines Gens erleichtern oder aber verhindern. Obwohl dies schon seit langem bekannt war, war die Identität der daran beteiligten Proteine größtenteils unbekannt. Wissenschaftler um Matthias Mann, Leiter der Forschungsabteilung Proteomics und Signaltransduktion am Max-Planck-Institut für Biochemie, konnten jetzt für die fünf wichtigsten Methylierungen Proteine identifizieren, die an die veränderten Histon-Proteine binden. „Bisher war es extrem schwierig, diese Proteine zu bestimmen“, erläutert Christian Eberl, Doktorand am MPIB. „Erst die neuesten Techniken der quantitativen Massenspektrometrie, die in der Abteilung von Matthias Mann entwickelt wurden, machten dies möglich.“

Die Ergebnisse der Wissenschaftler bilden die Grundlage für weitere Experimente, die ans Licht bringen sollen, welche Rolle die an die Histone bindenden Proteine genau spielen. „Mit unseren Arbeiten haben wir einen weiteren großen Schritt gemacht, um die vielfachen Mechanismen aufzuklären, durch die Histon-Modifikationen die Genregulation beeinflussen“, so Eberl. Da auch bei einigen Krebserkrankungen Veränderungen der Histone sowie der Proteine, die an Histone binden, eine Rolle spielen, könnten die Ergebnisse auf lange Sicht auch zum besseren Verständnis dieser Erkrankungen und somit zu neuen Therapieansätzen führen, hoffen die Forscher.

Originalveröffentlichung:
M. Vermeulen, H. C. Eberl, F. Matarese, H. Marks, S. Denissov, F. Butter, K. K. Lee, J. V. Olsen, A. A. Hyman, H. G. Stunnenberg and M. Mann: Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, September 17, 2010.
Kontakt:
Prof. Dr. Matthias Mann
Proteomics and Signaltransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: mmann@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/mann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise