Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene sind nicht alles - Wie modifizierte Histon-Proteine Gene regulieren

17.09.2010
Bis in die 90er-Jahre nahmen Wissenschaftler an, dass Histone, die häufigsten Proteine im Zellkern, nur für die Organisation und Stabilisierung der DNA verantwortlich sind.

Doch mittlerweile ist klar, dass sie auf vielfältige Weise in die Regulation von Genen eingreifen können. Je nach Veränderung ihrer Grundstruktur aktivieren oder hemmen sie das Ablesen von Genen. Gemeinsam mit Kollegen aus Dresden und den Niederlanden haben Forscher vom Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München jetzt weitere Interaktionspartner in diesem Prozess identifiziert. Erst neueste Methoden der Massenspektrometrie machten dies möglich. (Cell, 17. September 2010)

Die menschliche Erbsubstanz (DNA) liegt nicht ungeordnet in der Zelle vor. Wie um Spulen ist das zwei Meter lange Molekül um spezielle Proteine (Histone) gewickelt, damit es in den Zellkern mit einem Durchmesser von nur 0,006 Millimetern passt. Den so verpackten Komplex aus DNA und Proteinen nennen Forscher Chromatin. Histone bilden jedoch nicht nur das Gerüst des Chromatins, sondern spielen auch eine essentielle Rolle bei der Entscheidung, welche Gene abgelesen und in Proteine übersetzt werden und welche nicht. Obwohl in einem Organismus alle Zellen die gleichen Gene besitzen, werden diese unterschiedlich abgelesen und es entstehen verschiedene Zelltypen mit jeweils anderer Proteinzusammensetzung. Die Wissenschaft, die sich mit diesem Phänomen beschäftigt, heißt Epigenetik. Fehler können zu Störungen in der Entwicklung eines Embryos oder zu Krankheiten wie Krebs führen.

Obwohl Histone eine so bedeutende Rolle in der Genregulation spielen, ist der genaue Mechanismus noch nicht im Detail verstanden. Eine wichtige Rolle spielen Veränderungen in der Struktur der Histone: Durch das Anfügen von chemischen Gruppen werden die Histone so modifiziert, dass sie von unveränderten Histonen unterscheidbar sind. Auf diese Weise können sie eine gezielte Funktion an dieser speziellen Stelle im Genom ausführen. Eine der häufigsten Modifikationen ist die Methylierung, die dazu führt, dass weitere Proteine an die modifizierten Histone binden. So können sie das Ablesen eines Gens erleichtern oder aber verhindern. Obwohl dies schon seit langem bekannt war, war die Identität der daran beteiligten Proteine größtenteils unbekannt. Wissenschaftler um Matthias Mann, Leiter der Forschungsabteilung Proteomics und Signaltransduktion am Max-Planck-Institut für Biochemie, konnten jetzt für die fünf wichtigsten Methylierungen Proteine identifizieren, die an die veränderten Histon-Proteine binden. „Bisher war es extrem schwierig, diese Proteine zu bestimmen“, erläutert Christian Eberl, Doktorand am MPIB. „Erst die neuesten Techniken der quantitativen Massenspektrometrie, die in der Abteilung von Matthias Mann entwickelt wurden, machten dies möglich.“

Die Ergebnisse der Wissenschaftler bilden die Grundlage für weitere Experimente, die ans Licht bringen sollen, welche Rolle die an die Histone bindenden Proteine genau spielen. „Mit unseren Arbeiten haben wir einen weiteren großen Schritt gemacht, um die vielfachen Mechanismen aufzuklären, durch die Histon-Modifikationen die Genregulation beeinflussen“, so Eberl. Da auch bei einigen Krebserkrankungen Veränderungen der Histone sowie der Proteine, die an Histone binden, eine Rolle spielen, könnten die Ergebnisse auf lange Sicht auch zum besseren Verständnis dieser Erkrankungen und somit zu neuen Therapieansätzen führen, hoffen die Forscher.

Originalveröffentlichung:
M. Vermeulen, H. C. Eberl, F. Matarese, H. Marks, S. Denissov, F. Butter, K. K. Lee, J. V. Olsen, A. A. Hyman, H. G. Stunnenberg and M. Mann: Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, September 17, 2010.
Kontakt:
Prof. Dr. Matthias Mann
Proteomics and Signaltransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: mmann@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/mann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie