Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen-Taxi mit Turboantrieb

15.02.2018

Wissenschaftler am Deutschen Primatenzentrum verbessern DNA-Transfer bei Gentherapien

Parkinson, Chorea Huntington, Mukoviszidose – diese und viele andere meist tödlich verlaufende Erbkrankheiten des Menschen sind genetisch bedingt. Auch viele Krebsarten und Herzkreislauferkrankungen sind auf Fehler im Erbgut zurückzuführen. Eine vielversprechende Möglichkeit zur Behandlung dieser Krankheiten ist die Gentherapie.


Menschliche HEK293-Zellen produzieren nach der Infektion mit CD9-haltigen Viren ein rot fluoreszierendes Reporterprotein, das die erfolgreiche Übertragung viraler Erbinformation in die Zellen an

Foto: Kai Böker


Dr. Jens Gruber ist Leiter der Nachwuchsgruppe Medizinische RNA-Biologie am Deutschen Primatenzentrum.

Foto: Christian Kiel

Mit Hilfe von gentechnisch modifizierten Viren wird DNA in Zellen eingeschleust, um defekte Gene zu reparieren oder zu ersetzen. Wissenschaftler am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung haben herausgefunden, wie erkrankte Zellen mit dieser Methode zukünftig noch schneller und effizienter behandelt werden können.

Dafür veränderten die Forscher sogenannte HEK293-Zelllinien, die für die Produktion therapeutischer Viren genutzt werden. Die Zellen produzierten daraufhin ein Protein, genannt CD9, in großer Menge. Außerdem veränderten sie die für den Gentransfer genutzten Viren so, dass CD9 in deren Hüllmembran integriert wird.

Diese genetischen Manipulationen führten dazu, dass die Viren die Zielzellen schneller und effizienter infizierten. Die dadurch erreichte höhere Übertragungsrate der DNA in die Zielzellen verspricht zukünftig neue und verbesserte Behandlungsmöglichkeiten innerhalb der Gentherapie. Die Studie wurde in der Zeitschrift Molecular Therapy veröffentlicht.

Die Fähigkeit von Viren, ihr Erbmaterial in Wirtszellen einzuschleusen, wird als Werkzeug in der Gentherapie eingesetzt. Diese „Gen-Taxis“ bestehen aus veränderten Viren, den sogenannten viralen Vektoren. Sie werden mit funktionsfähigen Genen bestückt, welche die defekten, krankmachenden Gene in den Zellen ersetzen sollen. Voraussetzung ist aber, dass die Viren die entsprechenden Zellen zuverlässig erkennen und infizieren. Hier setzt die Forschung der Nachwuchsgruppe Medizinische RNA-Biologie am Deutschen Primatenzentrum an.

Transportbläschen in der Zelle sollen Effizienz der Gentherapie erhöhen

„In unserer Studie wollten wir herausfinden, ob und wie man die Infektionsrate von viralen Vektoren verbessern kann“, sagt Jens Gruber, Leiter der Nachwuchsgruppe und Senior-Autor der Studie. „Im Moment liegen die Infektionsraten, abhängig von den Zielzellen, oft bei rund 20 Prozent. Das ist für bestimmte Therapien zu wenig.“

Um das zu ändern, haben sich die Forscher die Produktion von sogenannten Exosomen angeschaut und überlegt, wie sie diesen Mechanismus nutzen können, um die Virenvektoren effizienter zu machen. Exosomen sind kleine Membranbläschen gefüllt mit Proteinen, RNA oder anderen Molekülen. Sie dienen zum Transport von Zellbestandteilen und zur Kommunikation zwischen Zellen.

„Unsere Hypothese war, dass wir die Erzeugung von Viren und ihre Effizienz verbessern können, wenn wir die Exosomenproduktion in den Zellen ankurbeln“, erklärt Jens Gruber die Relevanz der Transportbläschen für die Studie.

Um das zu erreichen, veränderten Jens Gruber und sein Team die HEK293-Zelllinien, die zur Produktion viraler Vektoren genutzt werden, genetisch so, dass sie das CD9-Protein in großer Menge herstellten. Dieses Protein ist bekannt für seine Funktion in der Zellbewegung, beim Zell-Zell-Kontakt und bei der Membranfusion. Die Vermutung war, dass es auch bei der Exosomenproduktion eine Rolle spielen könnte. Darüber hinaus bauten die Wissenschaftler das CD9-Protein in die Hüllmembran von Virenvektoren ein. „Wir konnten zwei Dinge beobachten“, fasst Jens Gruber die Ergebnisse zusammen.

„Erstens war die Exosomenproduktion in den HEK293-CD9-Zellen gegenüber den unbehandelten HEK293-Zellen stark erhöht, was für eine entscheidende Rolle des Proteins bei der Exosomenentstehung spricht. Zweitens wurde durch den Einbau des CD9-Proteins in der Virenmembran die Effizienz der DNA-Übertragung aus den Viren erheblich verbessert. Das zeigte sich in einer erhöhten Anzahl an infizierten Zielzellen, die das gewünschte Gen trugen, ohne dass mehr Virenvektoren dafür eingesetzt wurden.“

80-prozentige Infektionsrate

Die erhöhte CD9-Menge in den Viren führte zu einer gesteigerten, rund 80-prozentigen Infektionsrate. Das Protein scheint also eine direkte Auswirkung auf die Exosomenproduktion und Vireneffizienz zu haben, die bisher noch nicht beschrieben wurde. „Die Ergebnisse unserer Studie tragen dazu bei, die Entstehung von Exosomen und zugleich die Virusproduktion in Zellen zu verstehen“, sagt Jens Gruber. „Diese Erkenntnisse können genutzt werden, um momentan verwendete Viren-basierte Gentherapien effizienter zu machen. Zukünftig könnte man eventuell ganz auf Viren verzichten und Erbmaterial nur über Exosomen in Zielzellen schleusen.“


Originalpublikation

Böker KO, Lemus-Diaz N, Rinaldi Ferreira R, Schiller L, Schneider S, Gruber J (2017): The impact of the CD9 tetraspanin on lentivirus infectivity and exosome secretion. Molecular Therapy, 26(2), DOI: http://dx.doi.org/10.1016/j.ymthe.2017.11.008

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4241
http://www.dpz.eu

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Poröse Salze für Brennstoffzellen
24.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics