Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen-Schalter für Geruchsrezeptoren

11.11.2011
Regulatorelemente im Erbgut kontrollieren die Wahrscheinlichkeit, mit der Riechzellen eines der rund 1200 Rezeptorgene auswählen

Die Sinneszellen der Nasenschleimhaut nehmen die unzählige Vielfalt der Gerüche aus der Umgebung mit Hilfe von Geruchsrezeptoren wahr. Jede Sinneszelle entscheidet sich dabei für die Auswahl eines einzigen Rezeptortypen. Die Wahrscheinlichkeit, mit der diese Entscheidung auf ein bestimmtes Rezeptorgen fällt, bestimmt, wie viele Riechzellen diesen Rezeptortyp produzieren.


"NanoString"-Analyse: Das Verfahren versieht jede RNA mit einer Art Strichcode und macht sie so identifizierbar. Der Code besteht aus jeweils sechs Punkten mit den Farben grün, blau, rot und gelb. Die Strichcodes sind auf einer Oberfläche gebunden und werden durch ein elektrisches Feld so auseinandergezogen, dass sie unter dem Mikroskop sichtbar werden. Diese Art der Analyse von Genaktivität ist digital: Jeder Barcode entspricht einer bestimmten RNA. © NanoString

Wissenschaftler des Max-Planck-Instituts für Biophysik in Frankfurt haben nun einen wichtigen Mechanismus entdeckt, der die Wahrscheinlichkeit der Auswahl dieser Gene bestimmt. Demnach kontrollieren im Erbgut so genannte Regulatorelemente jeweils eine Gruppe von Rezeptorgenen in der ihrer näheren DNA-Umgebung. Diese Elemente wirken wie molekulare Schalter, welche die Aktivität von Genen anschalten können. Reguliert wird die Wahrscheinlichkeit, mit der Gene angeschaltet werden, nicht die Menge an Rezeptormolekülen, die eine Zelle bildet.

Die Gene für Geruchsrezeptoren bilden die größte Genfamilie im Erbgut vieler Tiere: Bei Mäuse beispielsweise sind von insgesamt 25000 Genen rund 1200 Gene für Geruchsrezeptoren. Die Rezeptorgene sind auf etwa 40 Regionen verteilt. Diese Gen-Gruppen enthalten unterschiedlich viele Rezeptorgene.

Regulatorelemente in der näheren Umgebung auf dem Chromosom kontrollieren die Aktivität einzelner Gene aus diesen Gruppen. Bekannte Regulatorelemente sind bislang das H-Element auf Chromosom 14 und das P-Element auf Chromosom 7.

Die Max-Planck-Forscher haben nun mittels RNA-Analysen entdeckt, dass das P-Element einzelne Gene aus einer Gruppe von 24 Geruchsrezeptor-Genen aktiviert: In gentechnisch veränderten Mäusen ohne das P-Element verändert sich die Wahrscheinlichkeit drastisch, dass eine Geruchssinneszelle eines der Gene auswählt. „Das P-Element kann die Gene nur anschalten und so bestimmen, ob eine Zelle einen Rezeptor bildet. Es hat jedoch keinen Einfluss darauf, wie viele Rezeptormoleküle die Zelle produziert. Es wirkt also wie ein Ein-Aus-Schalter“, sagt Peter Mombaerts vom Max-Planck-Institut für Biophysik. Andere Gen-Gruppen auf demselben oder anderen Chromosomen beeinflusst das Element nicht.

Der gezielte Verlust des P-Elements wirkt sich dabei unterschiedlich auf die Wahrscheinlichkeit der Rezeptorgenaktivierung aus: Manche Rezeptorgene werden nun gar nicht mehr ausgewählt, andere von weniger Sinneszellen. Wieder andere bleiben völlig unbeeinflusst. Daraus lässt sich schließen, dass das P-Element nicht als einziges die Aktivierung dieser Gen-Gruppe kontrolliert. Darauf deutet auch die begrenzte „Reichweite“ der Regulatorelemente in der jeweiligen Gen-Gruppe: Die Wirkung von H- und P-Elementen beschränkt sich nämlich auf 200000 Basenpaare. „Aus der Anzahl von Rezeptorgenen und den Abständen zwischen ihnen können wir auf die potenzielle Anzahl an Regulatorelementen schließen, die für ihre Kontrolle nötig sind. Jede Gen-Gruppe muss also von mehreren Elementen kontrolliert werden, insgesamt gibt es möglicherweise etwa 150 solcher Elemente für Geruchsrezeptorgene“, erklärt Mombaerts.

Noch wissen die Wissenschaftler nicht, auf welche Weise die Regulatorelemente die Auswahl von Geruchsrezeptorgenen beeinflussen. Möglicherweise geschieht dies über regulatorische Proteine, die an spezielle Bindungsstellen auf der DNA andocken können.

Möglich wurden diese Befunde mit der neuen Methode „NanoString“ zur Messung einzelner Boten-RNA-Moleküle. Mit dieser Methode konnten die Forscher die Menge an Boten-RNA von der Hälfte aller Geruchsrezeptorgene in einem Arbeitsschritt messen. Herkömmliche Methoden dagegen können nur ein Gen nach dem anderen auf seine Aktivität analysieren.

Die Ergebnisse bringen die Wissenschaftler der Antwort einen Schritt näher, wie die Geruchssinneszellen aus der riesigen Anzahl an Rezeptorgenen jeweils nur ein Gen auswählen. „Die vollständige Aufklärung dieser faszinierenden Frage wird noch einige Zeit in Anspruch nehmen. Die Anordnung in Gen-Gruppen spielt dabei möglicherweise eine besondere Rolle. Den einen Mechanismus dafür gibt es aber sicher nicht, wahrscheinlich wird die Auswahl auf verschiedenen Ebenen reguliert“, mutmaßt Mombaerts.

Ansprechpartner
Dr. Peter Mombaerts
Max-Planck-Institut für Biophysik, Frankfurt am Main
Telefon: +49 69 6303-4000
E-Mail: peter@mombaerts.org
Originalveröffentlichung
Mona Khan, Evelien Vaes, and Peter Mombaerts
Regulation of the Probability of Mouse Odorant Receptor Gene Choice
Cell, 11 November 2011, 147; S. 907-921 (doi:10.1016/j.cell.2011.09.049)

Dr. Peter Mombaerts | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4642156/gene_fuer_geruchsrezeptoren

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics