Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnregionen können sich neu verschalten

06.03.2009
Tübinger Wissenschaftler haben erstmals nachgewiesen, dass sich weit verteilte Nervennetze im Gehirn je nach Bedarf grundlegend umorganisieren.

Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen konnten durch experimentelle Reizung von Nervenzellen im Hippocampus erstmals zeigen, dass sich die Aktivität großer Hirnareale langfristig verändern lässt.

Durch eine Kombination von funktioneller Magnetresonanztomographie mit Mikrostimulation und Elektrophysiologie konnten sie verfolgen, wie sich große Populationen von Nervenzellen im Vorderhirn von Ratten neu vernetzen. Dieser Hirnbereich ist aktiv, wenn wir uns an etwas erinnern oder uns orientieren. Die gewonnen Erkenntnisse sind damit der erste experimentelle Nachweis dafür, dass sich große Teile des Gehirns verändern, wenn Lernprozesse stattfinden. (Current Biology, 10. März 2009)

Die Eigenschaft von Synapsen, Nervenzellen oder ganzen Hirnarealen, sich in Abhängigkeit von ihrer Verwendung zu verändern, nennen Wissenschaftler neuronale Plastizität. Sie ist ein elementarer Mechanismus für Lern- und Gedächtnisprozesse. Schon die Hebbsche Lernregel (1949) erklärt dieses Phänomen in neuronalen Netzwerken mit gemeinsamen Synapsen: Wenn eine Nervenzelle A eine Nervenzelle B dauerhaft und wiederholt erregt, so das Postulat des Psychologen Donald Olding Hebb, wird die Synapse dadurch so verändert, dass die Signalübertragung effizienter wird. Dadurch erhöht sich das Membranpotential im Empfänger-Neuron. Dieser Lernprozess, der wenige Minuten bis zu lebenslang anhalten kann, wurde intensiv im Hippocampus erforscht.

Eine große Anzahl von Studien hat seitdem gezeigt, dass der Hippocampus für das Erinnerungsvermögen und die räumliche Orientierung von Tieren und Menschen wichtig ist. So wie die Hirnrinde, besteht auch der Hippocampus aus Millionen von Nervenzellen, die über Synapsen miteinander verbunden sind. Die Nervenzellen kommunizieren mittels sogenannter "Aktionspotentiale" miteinander: elektrische Impulse die von der Sender- an die Empfängerzelle übermittelt werden. Treten diese Aktionspotentiale häufiger oder schneller oder besser koordiniert auf, so kann es zur Verstärkung der Signalübermittlung zwischen den Zellen, der so genannten Langzeit-Potenzierung (LTP - long-term potentiation) kommen: Die Übertragung des Signals wird dann dauerhaft verstärkt. Der Mechanismus dieser Verstärkung wird als die Grundlage des Lernens betrachtet.

Obwohl die Effekte der Langzeit-Potenzierung innerhalb des Hippocampus seit längerer Zeit bekannt sind, war bislang unklar, wie synaptische Veränderungen in dieser Struktur die Aktivität ganzer Neuronennetzwerke, also beispielsweise kortikaler Netzwerke, außerhalb des Hippocampus beeinflussen können. Dies haben die Wissenschaftler um Nikos Logothetis, Direktor am Max-Planck-Institut für biologische Kybernetik, nun erstmals systematisch erforscht. Das besondere an ihrer Untersuchung ist die Kombination verschiedener Methoden: Während der Kernspintomograph Bilder über die Durchblutung im Hirn liefert und daher ein indirektes Maß für die Aktivität großer Nervennetze ist, messen Elektroden im Gehirn direkt die Aktionspotentiale und damit die Stärke der Nervenleitungen. Es zeigte sich, dass nach experimenteller Stimulation die so erzeugte Verstärkung der Reizübertragung erhalten blieb. "Uns ist es gelungen, langfristige Umorganisation in den Nervennetzen aufgrund veränderter Aktivität an den Synapsen nachzuweisen", sagte Dr. Santiago Canals. Die Veränderungen zeigten sich in einer besseren Kommunikation zwischen den Hemisphären und in einer Verstärkung von Verschaltungen im limbischen System und in der Hirnrinde. Während die Hirnrinde unter anderem für Sinneswahrnehmungen und Bewegungen zuständig ist, verarbeitet das limbische System Emotionen und ist für die Entstehung von Triebverhalten mitverantwortlich.

Originalpublikation
Santiago Canals, Michael Beyerlein, Hellmut Merkle & Nikos K. Logothetis: Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology (2009), doi:10.1016/j.cub.2009.01.037

Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Tel: 07071-601-651
E-Mail: nikos.logothetis@tuebingen.mpg.de
Dr. Santiago Canals
E-Mail: scanals@iib.uam.es
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Tel: 07071-601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und befindet sich auf dem Max-Planck-Campus in Tübingen. Das Max-Planck-Institut für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.mpg.de
http://tuebingen.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten