Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnregionen können sich neu verschalten

06.03.2009
Tübinger Wissenschaftler haben erstmals nachgewiesen, dass sich weit verteilte Nervennetze im Gehirn je nach Bedarf grundlegend umorganisieren.

Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen konnten durch experimentelle Reizung von Nervenzellen im Hippocampus erstmals zeigen, dass sich die Aktivität großer Hirnareale langfristig verändern lässt.

Durch eine Kombination von funktioneller Magnetresonanztomographie mit Mikrostimulation und Elektrophysiologie konnten sie verfolgen, wie sich große Populationen von Nervenzellen im Vorderhirn von Ratten neu vernetzen. Dieser Hirnbereich ist aktiv, wenn wir uns an etwas erinnern oder uns orientieren. Die gewonnen Erkenntnisse sind damit der erste experimentelle Nachweis dafür, dass sich große Teile des Gehirns verändern, wenn Lernprozesse stattfinden. (Current Biology, 10. März 2009)

Die Eigenschaft von Synapsen, Nervenzellen oder ganzen Hirnarealen, sich in Abhängigkeit von ihrer Verwendung zu verändern, nennen Wissenschaftler neuronale Plastizität. Sie ist ein elementarer Mechanismus für Lern- und Gedächtnisprozesse. Schon die Hebbsche Lernregel (1949) erklärt dieses Phänomen in neuronalen Netzwerken mit gemeinsamen Synapsen: Wenn eine Nervenzelle A eine Nervenzelle B dauerhaft und wiederholt erregt, so das Postulat des Psychologen Donald Olding Hebb, wird die Synapse dadurch so verändert, dass die Signalübertragung effizienter wird. Dadurch erhöht sich das Membranpotential im Empfänger-Neuron. Dieser Lernprozess, der wenige Minuten bis zu lebenslang anhalten kann, wurde intensiv im Hippocampus erforscht.

Eine große Anzahl von Studien hat seitdem gezeigt, dass der Hippocampus für das Erinnerungsvermögen und die räumliche Orientierung von Tieren und Menschen wichtig ist. So wie die Hirnrinde, besteht auch der Hippocampus aus Millionen von Nervenzellen, die über Synapsen miteinander verbunden sind. Die Nervenzellen kommunizieren mittels sogenannter "Aktionspotentiale" miteinander: elektrische Impulse die von der Sender- an die Empfängerzelle übermittelt werden. Treten diese Aktionspotentiale häufiger oder schneller oder besser koordiniert auf, so kann es zur Verstärkung der Signalübermittlung zwischen den Zellen, der so genannten Langzeit-Potenzierung (LTP - long-term potentiation) kommen: Die Übertragung des Signals wird dann dauerhaft verstärkt. Der Mechanismus dieser Verstärkung wird als die Grundlage des Lernens betrachtet.

Obwohl die Effekte der Langzeit-Potenzierung innerhalb des Hippocampus seit längerer Zeit bekannt sind, war bislang unklar, wie synaptische Veränderungen in dieser Struktur die Aktivität ganzer Neuronennetzwerke, also beispielsweise kortikaler Netzwerke, außerhalb des Hippocampus beeinflussen können. Dies haben die Wissenschaftler um Nikos Logothetis, Direktor am Max-Planck-Institut für biologische Kybernetik, nun erstmals systematisch erforscht. Das besondere an ihrer Untersuchung ist die Kombination verschiedener Methoden: Während der Kernspintomograph Bilder über die Durchblutung im Hirn liefert und daher ein indirektes Maß für die Aktivität großer Nervennetze ist, messen Elektroden im Gehirn direkt die Aktionspotentiale und damit die Stärke der Nervenleitungen. Es zeigte sich, dass nach experimenteller Stimulation die so erzeugte Verstärkung der Reizübertragung erhalten blieb. "Uns ist es gelungen, langfristige Umorganisation in den Nervennetzen aufgrund veränderter Aktivität an den Synapsen nachzuweisen", sagte Dr. Santiago Canals. Die Veränderungen zeigten sich in einer besseren Kommunikation zwischen den Hemisphären und in einer Verstärkung von Verschaltungen im limbischen System und in der Hirnrinde. Während die Hirnrinde unter anderem für Sinneswahrnehmungen und Bewegungen zuständig ist, verarbeitet das limbische System Emotionen und ist für die Entstehung von Triebverhalten mitverantwortlich.

Originalpublikation
Santiago Canals, Michael Beyerlein, Hellmut Merkle & Nikos K. Logothetis: Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology (2009), doi:10.1016/j.cub.2009.01.037

Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Tel: 07071-601-651
E-Mail: nikos.logothetis@tuebingen.mpg.de
Dr. Santiago Canals
E-Mail: scanals@iib.uam.es
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Tel: 07071-601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und befindet sich auf dem Max-Planck-Campus in Tübingen. Das Max-Planck-Institut für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.mpg.de
http://tuebingen.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics