Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnregionen können sich neu verschalten

06.03.2009
Tübinger Wissenschaftler haben erstmals nachgewiesen, dass sich weit verteilte Nervennetze im Gehirn je nach Bedarf grundlegend umorganisieren.

Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen konnten durch experimentelle Reizung von Nervenzellen im Hippocampus erstmals zeigen, dass sich die Aktivität großer Hirnareale langfristig verändern lässt.

Durch eine Kombination von funktioneller Magnetresonanztomographie mit Mikrostimulation und Elektrophysiologie konnten sie verfolgen, wie sich große Populationen von Nervenzellen im Vorderhirn von Ratten neu vernetzen. Dieser Hirnbereich ist aktiv, wenn wir uns an etwas erinnern oder uns orientieren. Die gewonnen Erkenntnisse sind damit der erste experimentelle Nachweis dafür, dass sich große Teile des Gehirns verändern, wenn Lernprozesse stattfinden. (Current Biology, 10. März 2009)

Die Eigenschaft von Synapsen, Nervenzellen oder ganzen Hirnarealen, sich in Abhängigkeit von ihrer Verwendung zu verändern, nennen Wissenschaftler neuronale Plastizität. Sie ist ein elementarer Mechanismus für Lern- und Gedächtnisprozesse. Schon die Hebbsche Lernregel (1949) erklärt dieses Phänomen in neuronalen Netzwerken mit gemeinsamen Synapsen: Wenn eine Nervenzelle A eine Nervenzelle B dauerhaft und wiederholt erregt, so das Postulat des Psychologen Donald Olding Hebb, wird die Synapse dadurch so verändert, dass die Signalübertragung effizienter wird. Dadurch erhöht sich das Membranpotential im Empfänger-Neuron. Dieser Lernprozess, der wenige Minuten bis zu lebenslang anhalten kann, wurde intensiv im Hippocampus erforscht.

Eine große Anzahl von Studien hat seitdem gezeigt, dass der Hippocampus für das Erinnerungsvermögen und die räumliche Orientierung von Tieren und Menschen wichtig ist. So wie die Hirnrinde, besteht auch der Hippocampus aus Millionen von Nervenzellen, die über Synapsen miteinander verbunden sind. Die Nervenzellen kommunizieren mittels sogenannter "Aktionspotentiale" miteinander: elektrische Impulse die von der Sender- an die Empfängerzelle übermittelt werden. Treten diese Aktionspotentiale häufiger oder schneller oder besser koordiniert auf, so kann es zur Verstärkung der Signalübermittlung zwischen den Zellen, der so genannten Langzeit-Potenzierung (LTP - long-term potentiation) kommen: Die Übertragung des Signals wird dann dauerhaft verstärkt. Der Mechanismus dieser Verstärkung wird als die Grundlage des Lernens betrachtet.

Obwohl die Effekte der Langzeit-Potenzierung innerhalb des Hippocampus seit längerer Zeit bekannt sind, war bislang unklar, wie synaptische Veränderungen in dieser Struktur die Aktivität ganzer Neuronennetzwerke, also beispielsweise kortikaler Netzwerke, außerhalb des Hippocampus beeinflussen können. Dies haben die Wissenschaftler um Nikos Logothetis, Direktor am Max-Planck-Institut für biologische Kybernetik, nun erstmals systematisch erforscht. Das besondere an ihrer Untersuchung ist die Kombination verschiedener Methoden: Während der Kernspintomograph Bilder über die Durchblutung im Hirn liefert und daher ein indirektes Maß für die Aktivität großer Nervennetze ist, messen Elektroden im Gehirn direkt die Aktionspotentiale und damit die Stärke der Nervenleitungen. Es zeigte sich, dass nach experimenteller Stimulation die so erzeugte Verstärkung der Reizübertragung erhalten blieb. "Uns ist es gelungen, langfristige Umorganisation in den Nervennetzen aufgrund veränderter Aktivität an den Synapsen nachzuweisen", sagte Dr. Santiago Canals. Die Veränderungen zeigten sich in einer besseren Kommunikation zwischen den Hemisphären und in einer Verstärkung von Verschaltungen im limbischen System und in der Hirnrinde. Während die Hirnrinde unter anderem für Sinneswahrnehmungen und Bewegungen zuständig ist, verarbeitet das limbische System Emotionen und ist für die Entstehung von Triebverhalten mitverantwortlich.

Originalpublikation
Santiago Canals, Michael Beyerlein, Hellmut Merkle & Nikos K. Logothetis: Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology (2009), doi:10.1016/j.cub.2009.01.037

Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Tel: 07071-601-651
E-Mail: nikos.logothetis@tuebingen.mpg.de
Dr. Santiago Canals
E-Mail: scanals@iib.uam.es
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Tel: 07071-601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und befindet sich auf dem Max-Planck-Campus in Tübingen. Das Max-Planck-Institut für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.mpg.de
http://tuebingen.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie