Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn kommuniziert

24.02.2012
Einen wichtigen Mechanismus, wie die menschlichen Gehirnhälften miteinander kommunizieren, entdeckte nun ein Forscherteam aus Berlin und der Universität Bern. Die gewonnenen Ergebnisse, die in der aktuellen Ausgabe des Fachjournals Science vorgestellt werden, führen zu neuen Einblicken in die Nervenzellkommunikation des Gehirns, die auch bei Schlaganfall eine Rolle spielen könnten.

Auf dem Weg zum Gehirn kreuzen sich die Nervenbahnen im menschlichen Körper. Dies hat zur Folge, dass die Reize in der gegenüberliegenden Hirnhälfte verarbeitet werden. Also berührt uns zum Beispiel jemand an der rechten Hand, kommt diese Berührung in unserer linken Hirnhälfte an.


Die Nervenzellen beider Gehirnzellen müssen miteinander kommunizieren, damit der Körper bestimmte Funktionen ausführen kann.
Foto: Philipp Mergenthaler

Trotzdem müssen beide Hirnhälften ihre Aktivitäten abstimmen. Da einige Funktionen, wie zum Beispiel Sprache, dominant nur in einer Hemisphäre ausgeprägt sind, müssen deren Signale immer der anderen Hirnhälfte mitgeteilt werden. Noch offensichtlicher ist dies bei alltäglichen Aufgaben wie der Koordination der Hände oder der Füße, die eine sehr präzise Kommunikation der beiden Gehirnhälften nötig macht. Die Signale, die die Hirnhälften erreichen, werden dabei via einer massiven Nervenbahn, dem sogenannten Balken, von der einen Hemisphäre der Großhirnrinde zur anderen gesendet.

Die Forschergruppe um Matthew Larkum vom Exzellenzcluster NeuroCure an der Charité – Universitätsmedizin Berlin und der Humboldt-Universität zu Berlin erforscht Mechanismen im Gehirn, die die Aktivitäten von Neuronen in der Großhirnrinde kontrollieren. In ihrer aktuellen Studie in Zusammenarbeit mit der Universität Bern konzentrierten sich die Neurowissenschaftler dabei auf die Verarbeitung von Tastempfindungen. Hierzu benutzten Larkum und sein Team eine Reihe von Methoden wie beispielsweise intrazelluläre Messungen einzelner Nervenzellen im intakten Gehirn und verschiedene Bild-gebende Verfahren während der sensorischen Stimulation der Hinterpfote einer Ratte.

Dabei fanden die Forscher jetzt heraus, dass die Reizung der rechten und linken Pfote der Ratte eine relativ langsame, fast halbsekundenlange anhaltende hemmende Wirkung auf die Aktivität der Nervenzellen hat. „Das ist sehr langsam“, stellt Larkum fest. „Normalerweise erfolgt die Signalübertragung um ein Vielfaches schneller. Daher wollten wir wissen, welche Nervenschaltung diesem Mechanismus zu Grunde liegt und die zellulären Kommunikationswege identifizieren“, erklärt er weiter.

Dies gelang ihnen mit Hilfe einer neuen Technologie, der sogenannten Optogenetik, die es ermöglicht spezifische Nerven mit Licht zu stimulieren. So konnten die Forscher zeigen, dass Nervenfasern, die aus der gegenüberliegenden Hemisphäre kommen, eine spezielle Gruppe von lokalen hemmenden Nervenzellen aktivieren. Diese Nervenzellen wiederum aktivieren langsam wirkende Rezeptoren, die zu einer geringeren Aktivität in den anderen Nervenzellen derselben Hemisphäre führen.

Vor allem für die Schlaganfallforschung könnte dies ein weiterer, kleiner Baustein bei der Entwicklung neuer Therapien sein, da dieser Mechanismus hier eine wichtig Rolle spielt. Doch nicht nur bei Schlaganfallschäden ist die Kommunikation der beiden Hemisphären in der Großhirnrinde entscheidend, sondern auch für eine Reihe kognitiver Fähigkeiten, weshalb die Ergebnisse der Studie noch weitreichende Auswirkungen haben könnten.

NeuroCure ist ein im Rahmen der Exzellenzinitiative des Bundes und der Länder gefördertes Exzellenzcluster an der Charité Universitätsmedizin Berlin. Im Fokus des interdisziplinären Forschungsverbundes steht die Übertragung (Translation) neurowissenschaftlicher Erkenntnisse der Grundlagenforschung in die klinische Anwendung. Ein besseres Verständnis von Krankheitsmechanismen trägt dazu bei, wirksame Therapien für neurologische Erkrankungen wie Schlaganfall, Multiple Sklerose oder Epilepsie zu entwickeln. Neben der Charité sind die Humboldt-Universität zu Berlin, die Freie Universität Berlin, das Max-Delbrück-Zentrum für Molekulare Medizin (MDC), das Leibniz-Institut für Molekulare Pharmakologie (FMP) und das Deutsches Rheumaforschungszentrum (DRFZ) Partner von NeuroCure.

Selected publications:

Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABAB-mediated interhemispheric inhibition. Science In press.

Kontakt:
Prof. Dr. Matthew Larkum
Neurowissenschaftliches Forschungszentrum
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 528152
Email: matthew.larkum@gmail.com

Constanze Haase | idw
Weitere Informationen:
http://www.hu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Tumoren ordentlich einheizen
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit