Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum ein Fußballspiel im Gehirn entschieden wird

09.10.2012
Göttinger Forscher haben geklärt, wie das Gehirn sich gleichzeitig auf verschiedene Objekte konzentrieren kann, ohne sich von unwichtigen Informationen ablenken zu lassen.

Xavi spielt den Ball zu Andrès Iniesta, der lässt ihn einmal präzise prallen und gleich ist das Leder bei Xabi Alonso. Als wären sie Ballmagneten kreiseln die Mittelfeldspieler der spanischen Fußballnationalmannschaft über das Spielfeld, immer den Ball und die Mitspieler im Blick.


Der Stürmer muss bei diesem Torschuss seine Aufmerksamkeit aufteilen: Neben dem Torwart muss er die Nummer 3 beachten, die seinen Schuss blockieren könnte. Durch Teilung seines „Aufmerksamkeitsscheinwerfers’“behält er die optimale Übersicht. Um seine Verarbeitungskapazitäten nicht zu überlasten, ist er in der Lage alles neben und zwischen seinen beiden Aufmerksamkeitsbereichen auszublenden. Damit stehen ihm alle für den Torschuss notwendigen Informationen in optimaler Qualität und ohne Ablenkung zur Verfügung. Dieser Prozess ist in der Abbildung durch entsprechende Unschärfen dargestellt.

Bild: Fuchstrick GbR/ Christian Kiel

Die Gegner rasen wie hilflose Statisten hinterher. Göttinger Neurowissenschaftler haben herausgefunden, wie das menschliche Gehirn durch die Verteilung von visueller Aufmerksamkeit zum Beispiel diesen „Tiki-Taka“-Fußball der spanischen Europameister möglich macht. Visuelle Aufmerksamkeit nennen Wissenschaftler die Fähigkeit, sich auf Sinnesinformationen zu konzentrieren, die für unsere Handlungen wichtig sind. Oft gibt es aber mehrere Dinge, die wir gleichzeitig beachten müssen, wie die Europameister aus Spanien bei ihrem Kurzpass-Spiel eben Ball und Mitspieler. Wie dies gelingt, auch wenn unwichtige Objekte uns ablenken könnten, war bislang unklar.

Ein Wissenschaftlerteam um Stefan Treue vom Deutschen Primatenzentrum (DPZ) in Göttingen hat zusammen mit Kollegen der McGill Universität in Montreal in einer Studie an Rhesusaffen herausgefunden: Das Gehirn ist in der Lage, Aufmerksamkeit quasi als Doppelscheinwerfer einzusetzen, die gleichzeitig einzelne Spots auf die relevanten Objekte legen und die unwichtigen im Dunkeln lassen (Neuron, 10.1016/j.neuron.2011.10.013).

Wenn wir ein Objekt beachten, so sind die Nervenzellen im Gehirn aktiv, die für diesen Teil des Gesichtsfelds zuständig sind. Manchmal müssen wir uns jedoch gleichzeitig auf mehrere Gegenstände an verschiedenen Raumpositionen konzentrieren, zwischen denen sich zudem oft noch für uns irrelevante Dinge befinden. Es existierten verschiedene wissenschaftliche Theorien, wie dies funktionieren könnte. Es könnte sein, dass sich der Aufmerksamkeitsfokus räumlich teilt und die Störfaktoren dazwischen ausblendet. Eine andere Möglichkeit wäre, dass der „Scheinwerfer der Aufmerksamkeit“ sich so breit auffächert, dass er alle relevanten Objekte erfasst, aber auch die unwichtigen Dinge dazwischen. Denkbar wäre auch, dass der Aufmerksamkeitsscheinwerfer sehr schnell zwischen den verschiedenen beachteten Objekten hin und her wechselt.

Um zu erklären, wie unser Gehirn mit dieser schwierigen Situation umgeht, haben die DPZ-Forscher und ihre kanadischen Kollegen die Aktivität einzelner Nervenzellen im für das Sehen zuständigen Teil des Gehirns gemessen. Die Untersuchungen fanden an zwei auf eine Sehaufgabe trainierten Rhesusaffen statt. Die Tiere hatten erfolgreich gelernt, auf einem Monitor zwei für sie wichtige Objekte zu beachten, zwischen denen sich ein unwichtiger Störreiz befand. Es zeigte sich, dass die Nervenzellen der Affen auf die beiden beachteten Objekte verstärkt reagierten und das Störsignal nur ein schwache Reaktion auslöste. Das Gehirn kann also die visuelle Aufmerksamkeit räumlich aufspalten und dazwischen liegende Bereiche ignorieren. „Unsere Ergebnisse zeigen die große Anpassungsfähigkeit des Gehirns, die es uns ermöglicht, mit vielen verschiedenen Situationen optimal umzugehen. Dieses Multi-Tasking erlaubt es uns gleichzeitig mehrere Dinge zu beachten“, sagte Stefan Treue, Leiter der Abteilung Kognitive Neurowissenschaften am Deutschen Primatenzentrum. Die Flexibilität unseres Aufmerksamkeitssystems ist also eine Voraussetzung dafür, dass Menschen zu fast unfehlbaren Fußballartisten werden können, aber auch dafür, dass wir uns sicher im Straßenverkehr bewegen können.

Originalpublikation
Robert Niebergall, Paul S. Khayat, Stefan Treue, Julio C. Martinez-Trujillo (2011): Multifocal attention filters out targets from distractors within and beyond primate MT neurons receptive field boundaries. Neuron, Volume 72, Issue 6, 1067-1079, 22 December 2011. doi: 10.1016/j.neuron.2011.10.013

Kontakt
Prof. Dr. Stefan Treue
Tel: +49 551 3851-118
E-Mail: treue@gwdg.de

Dr. Susanne Diederich (Kommunikation)
Tel: +49 551 3851-359
Mobil: +49 151 42616141
E-Mail: sdiederich@dpz.eu


Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält vier Freilandforschungsstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 86 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.dpz.eu/
http://www.dpz.eu/akn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie