Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher zeigen, wie Nervenzellen lernen

29.09.2010
Ein Muskel wird kräftiger, wenn man ihn regelmäßig nutzt. Ähnlich sieht es im Gehirn aus: Nervenzellen werden umso kontaktfreudiger, je häufiger sie aktiv sind. Hirnforscher der Universität Bonn haben nun herausgefunden, welche Prozesse bei diesem Trainingseffekt eine wesentliche Rolle spielen. Die Ergebnisse erscheinen am 29.9. im Journal of Neuroscience (doi: 10.1523/JNEUROSCI.1847-10.2010).

Unser Gehirn ist kein fest verdrahteter Computer - wenn es so wäre, könnten wir nicht lernen. Beispielsweise werden häufig genutzte Signalwege immer weiter ausgebaut. Eine wichtige Rolle spielen dabei die Synapsen; das sind die Kontaktstellen zwischen zwei Nervenzellen.

An den Synapsen wird das elektrische Signal von der einen zur anderen Zelle weitergereicht. Mehr noch: Häufig genutzte Synapsen funktionieren wie eine Art Verstärker. Selbst sehr schwache Eingangssignale können bei ihnen zu einer starken Erregung der Nachbarzelle führen.

Diese Fähigkeit bekommen Synapsen jedoch nicht in die Wiege gelegt - sie müssen sie erlernen. Die Bonner Hirnforscher haben diesen Lernprozess genauer unter die Lupe genommen. Dabei konnten sie erstmals nachweisen, welche wichtige Rolle der Zellkörper dabei spielt.

Eine Synapse besteht im Prinzip aus einer Zuleitung (dem Axon), die durch einen schmalen Spalt von einer ableitenden Faser (dem Dendriten) getrennt ist. Jeder elektrische Reiz läuft vom Zellkörper über das Axon bis zum synaptischen Spalt. Dort führt er zur Ausschüttung chemischer Botenstoffe. Diese durchqueren den Spalt und docken an den Dendriten an. Der Dendrit generiert als Reaktion ein elektrisches Signal und leitet es weiter.

Wie viel Botenstoffe an der Synapse ausgeschüttet werden, hängt von ihrem „Trainingszustand“ ab: Bei häufiger Reizung kann sie so umgebaut werden, dass sie auf einen Schlag große Mengen dieser Neurotransmitter freisetzen kann. „Wir konnten nun erstmals zeigen, dass für den Umbau der Synapse nicht nur die regelmäßige lokale Stimulierung verantwortlich ist“, sagt Professor Dr. Heinz Beck von der Uni Bonn. „Er hängt auch ganz entscheidend von der Reizung des einige Millimeter entfernten Zellkörpers ab.“

Es ist dem Neurowissenschaftler zusammen mit seinen Kollegen gelungen, ausschließlich den Zellkörper oder alternativ ausschließlich die Synapse zu reizen. In beiden Fällen beobachteten die Forscher keinen nachhaltigen Trainingseffekt. Anders war es, wenn sowohl Zellkörper als auch Synapse regelmäßig elektrisch gereizt wurden: Die Kontaktfreude der Nervenzelle nahm dann dauerhaft zu.

Der Zellkörper enthält unter anderem das genetische Material der Nervenzelle. Die Forscher vermuten, dass durch die regelmäßige elektrische Reizung gezielt Erbinformationen eingeschaltet werden. Der Zellkörper produziert dann vermehrt Proteine, die für die synaptische Funktion wichtig sind. Diese Proteine gelangen dann über eine Art „Schienennetz“ innerhalb der Zelle zur Synapse.

„Wir haben diese Theorie überprüft, indem wir das Schienennetz zerstört haben“, erläutert Beck. Mit dem erwarteten Ergebnis: „Die Synapsen büßten daraufhin ihre Lernfähigkeit ein.“ Die Wissenschaftler wollen nun herausfinden, welche Proteine aus dem Zellkörper für den Trainingseffekt verantwortlich sind.

Kontakt:
Prof. Dr. Heinz Beck
Life&Brain-Zentrum der Universität Bonn
Telefon: 0228/6885-270
E-Mail: Heinz.Beck@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Axon Botenstoff Hirnforscher Nervenzelle Protein Reizung Synapse Trainingseffekt Zelle Zellkörper

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics