Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher verhindern Herzversagen bei Mäusen

26.09.2012
Kardialer Stress, zum Beispiel Herzinfarkt oder hoher Blutdruck, führt oft zu einem krankhaften Herzwachstum und in der Folge zu Herzversagen.

Zwei kleine RNA-Moleküle spielen in Mäusen dabei eine Schlüsselrolle, wie Forscher an der Medizinischen Hochschule Hannover und am Göttinger Max-Planck-Institut für biophysikalische Chemie jetzt herausgefunden haben.


Das Herz der Mäuse, die mehr der MikroRNAs 212 und 132 besitzen (rechts), ist deutlich größer als das Herz normaler Mäuse (links).

Bild: Kamal Chowdhury / Max-Planck-Institut für biophysikalische Chemie

Hemmten sie eines dieser RNA-Moleküle, konnten sie die Nager vor krankhaftem Herzwachstum bewahren. Die Forscher hoffen, mit diesen Erkenntnissen neue Therapieansätze entwickeln zu können, die den Menschen vor Herzversagen schützen. (Nature Communications, 25. September 2012).

Atemnot, Müdigkeit, verminderte Leistungsfähigkeit – diese Symptome können eine Herzschwäche begleiten. Deutschlandweit leiden rund 1,8 Millionen Menschen an der Krankheit. Eine Ursache dafür kann ein zu großes Herz sein, eine sogenannte Herzhypertrophie. Sie kann unter anderem entstehen, wenn das Herz dauerhaftem Stress ausgesetzt ist, beispielsweise durch anhaltenden Bluthochdruck oder einen Herzklappenfehler. Um mehr Pumpleistung aufbringen zu können, vergrößern sich die Herzmuskelzellen – ein Zustand, der unbehandelt oft zu Herzversagen führt.

Zwei kleine RNA-Moleküle geben den Ausschlag

Ein Team von Forschern des Göttinger Max-Planck-Instituts für biophysikalische Chemie und der Medizinischen Hochschule Hannover hat entdeckt, dass zwei kleine RNA-Moleküle beim Wachstum der Herzmuskelzellen eine Schlüsselrolle spielen: die MikroRNAs 212 und 132. Die Wissenschaftler hatten beobachtet, dass diese MikroRNAs in den Herzmuskelzellen von Mäusen mit Herzhypertrophie verstärkt enthalten sind. Um herauszufinden, welche Rolle die beiden MikroRNAs spielen, züchteten die Forscher genetisch veränderte Mäuse, die ungewöhnlich viele dieser Moleküle in ihren Herzmuskelzellen besaßen. „Diese Nager entwickelten eine Herzhypertrophie und lebten nur drei bis sechs Monate, während ihre gesunden Artgenossen ein reguläres Alter von mehreren Jahren erreichten“, erklärt Dr. Kamal Chowdhury, Wissenschaftler in der Abteilung Molekulare Zellbiologie am Max-Planck-Institut für biophysikalische Chemie. „Zum Vergleich haben wir diese MikroRNAs bei anderen Mäusen gezielt abgeschaltet. Diese Tiere hatten zwar ein etwas kleineres Herz als ihre gesunden Artgenossen, unterschieden sich aber in Verhalten und Lebensdauer nicht von ihnen“, so der Biologe weiter. Der springende Punkt: Setzten die Forscher die Herzen dieser Nager durch Einengen der Aorta ‚unter Stress‘, entwickelten sie im Gegensatz zu normalen Mäusen keine Herzhypertrophie.
Ein MikroRNA-Hemmstoff schützt Mäuse vor einer Hypertrophie

Doch auch normale Mäuse konnten die Forscher vor der Krankheit schützen: Wenn sie ihnen einen Stoff gaben, der gezielt die MikroRNA 132 hemmt, entwickelte sich kein krankhaftes Herzwachstum – selbst dann nicht, wenn ihre Herzen ‚unter Stress’ gesetzt wurden. „Damit haben wir erstmals einen Ansatz gefunden, krankhaftes Herzwachstum und Herzversagen bei Mäusen zu behandeln“, sagt der Kardiologe Prof. Dr. Dr. med. Thomas Thum, Leiter des Instituts für Molekulare und Translationale Therapiestrategien (IMTTS) an der Medizinischen Hochschule Hannover. Die Forscher hoffen, daraus Therapieansätze entwickeln zu können, die auch Menschen vor Herzversagen schützen. „Solche MikroRNA-Hemmstoffe könnten allein oder in Kombination mit herkömmlichen Behandlungen ein vielversprechender neuer Therapieansatz sein“, so Thum.

„Wie wir entdeckt haben, ist bei Mäusen mit ‚Überdosierung‘ der beiden MikroRNAs in ihren Herzmuskelzellen das zelluläre ‚Recyclingprogramm‘ gedrosselt“, erklärt Dr. Ahmet Ucar, der gemeinsam mit Shashi K. Gupta für die Experimente verantwortlich war. Beim zellulären Recycling baut die Zelle nicht mehr benötigte oder beschädigte Zellbestandteile ab und verwertet deren Einzelteile wieder – ein lebenswichtiger Vorgang, der Zellen zum Beispiel bei Stress das Überleben sichert. Bei Mäusen ohne die MikroRNAs 212 und 132 ist das Recycling aktiver als bei ihren normalen Artgenossen. Möglicherweise könnte das verminderte zelluläre Recycling eine Ursache der beobachteten Herzhypertrophie sein.

Originalveröffentlichung:
Ahmet Ucar, Shashi K. Gupta, Jan Fiedler, Erdem Erikci, Michal Kardasinski, Sandor Batkai, Seema Dangwal, Regalla Kumarswamy, Claudia Bang, Angelika Holzmann, Janet Remke, Massimiliano Caprio, Claudia Jentzsch, Stefan Engelhardt, Sabine Geisendorf, Carolina Glas, Thomas G. Hofmann, Michelle Nessling, Karsten Richter, Mario Schiffer, Lucie Carrier, L. Christian Napp, Johann Bauersachs, Kamal Chowdhury, Thomas Thum. Nature Communications, 25. September 2012, doi: 10.1038/ncomms2090

Kontakt:
Prof. Dr. Dr. med. Thomas Thum, Internist, Kardiologe, Institut für Molekulare und Translationale Therapiestrategien (IMTTS)
Medizinische Hochschule Hannover
Tel.: 0511 532-5272, mobil: +49 176 15325271
E-Mail: thum.thomas@mh-hannover.de

Dr. Kamal Chowdhury, Abteilung Molekulare Zellbiologie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: 0551 201-1507
E-Mail: kchowdh@gwdg.de

Bettina Bandel, Presse- und Öffentlichkeitsarbeit
Medizinische Hochschule Hannover
Tel.: 0511 532-4046
E-Mail: bandel.bettina@mh-hannover.de

Verena Krug, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: 0551 201-1310
E-Mail: verena.krug@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/9511413/pr_1216
http://www.mh-hannover.de/imtts.html
http://www.mpibpc.mpg.de/de/gruss

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie