Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher sehen Stammzellen bei ihrer Spezialisierung im Gehirn zu

20.02.2015

Neulinge im Riechkolben passen sich schnell in der Funktion an, dann erst reifen die Strukturen

Adulte Stammzellen stellen eine große Hoffnung für die moderne Biomedizin dar. Sie stammen aus dem erwachsenen Organismus, daher gilt ihre Verwendung als ethisch unbedenklich. Sie sind sehr flexibel und können sich noch in eine Vielzahl von speziellen Zelltypen verwandeln. So werden geschädigte Organe oder Gewebe stabilisiert oder können sich sogar regenerieren.

Neuronale Stammzellen, die ein Reservoir für Nervenzellen bilden, werden unter anderem für die Therapie neurodegenerativer Erkrankungen wie Morbus Parkinson oder Morbus Alzheimer erforscht. Sie können sich in alle Haupttypen der Hirnzellen differenzieren. Allerdings ist über diese Mechanismen wenig bekannt.

Tübinger Forscher unter der Leitung von Professorin Olga Garaschuk vom Physiologischen Institut der Universität Tübingen haben sie in Zusammenarbeit mit der Yale Universität, New Haven, USA, dem Max-Planck-Institut für Neurobiologie in Martinsried und dem Helmholtz Zentrum für Umwelt und Gesundheit in München genauer untersucht.

Sie haben erstmals konkrete Informationen über die funktionellen Eigenschaften von Zellen gesammelt, während sie sich im lebenden Tier von Vorläufern zu Hirnzellen differenzierten. Ihre Ergebnisse wurden im Magazin Nature Communications veröffentlicht.

Im Gehirn erwachsener Säugetiere gibt es nur zwei Orte, an denen sich Stammzellen befinden, aus denen Nervenzellen gebildet werden können: Sie liegen in den Seitenventrikeln und im Hippocampus. Die Forscherinnen und Forscher konzentrierten sich auf eine Stammzellzone der Seitenventrikel, aus der Vorläufer der Nervenzellen in Richtung des Riechkolbens wandern.

Der Riechkolben oder Bulbus olfactorius ist eine Struktur an der vorderen Basis des Gehirns, in dem die aus der Nasenschleimhaut heranführenden Riechnerven enden. Dort spezialisieren sich die einstigen Stammzellen für Aufgaben bei der Verarbeitung von Geruchsinformationen.

„Durch den Einsatz neuartiger Mikroskopiemethoden konnten wir erstmals die Aktivität von wandernden Neuronenvorläuferzellen im Riechkolben der Maus direkt beobachten“, sagt Olga Garaschuk. Ermöglicht wurden die Messungen durch die Verwendung spezieller Fluoreszenzfarbstoffe, deren Leuchtintensität sich entsprechend der Zellaktivität ändert.

Die Untersuchungen zeigten, dass bereits 48 Stunden nach Eintreffen der Zellen im Riechkolben etwa die Hälfte der Zellen in der Lage war, auf Geruchsreize zu antworten. Obwohl die Neuronenvorläufer immer noch wanderten, ähnelte ihre Empfindlichkeit für Geruchsstoffe und ihre elektrische Aktivität bereits der von den umgebenden, reifen Nachbarzellen. Das reife Aktivitätsmuster dieser Zellen stand im starken Kontrast zu ihrem molekularbiologischen Erscheinungsbild, das für unreife, wandernde Neuronenvorläufer typisch war.

„Unsere Daten dokumentieren eine erstaunlich schnelle funktionale Integration der Vorläuferzellen in das bestehende neuronale Netzwerk“, sagt die Forscherin. „Sie zeigen außerdem, dass sensorische Reize der Umgebung eine bedeutende Rolle für die Integration dieser Zellen spielen können.“

Originalpublikation:
Kovalchuk Y, Homma R, Liang Y, Maslyukov A, Hermes M, Thestrup T, Griesbeck O, Ninkovic J, Cohen LB, Garaschuk O. (2015) In vivo odorant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nature Communications, 19. Februar 2015, DOI: 10.1038/ncomms7349.

Kontakt:
Prof. Dr. Olga Garaschuk
Universität Tübingen
Physiologisches Institut
Telefon +49 7071 29-73641
olga.garaschuk[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics