Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Saar-Uni arbeiten mit neuem hochauflösendem Supermikroskop

14.01.2013
Um zu verstehen, was im Inneren einer Zelle vor sich geht, brauchen Wissenschaftler leistungsstarke Lichtmikroskope, die ihnen Einblicke in den Mikrokosmos bieten.

Konnten diese Mikroskope lange Zeit nur Strukturen sichtbar machen, die größer als 200 Nanometer waren, ist eine neue Generation dieser Geräte in der Lage, Details in einer Zelle zu zeigen, die bis zu 10 Nanometer klein sind.


Die beiden Abbildungen zeigen Proteine im Synaptischen Spalt (rote Punkte) einer Bipolarzelle aus dem Auge einer Maus – aufgenommen mit dem neuen Hochleistungsmikroskop (oben) und einem herkömmlichen Laser-Mikroskop (unten) im Vergleich. Mit seinem Auflösungsvermögen kann das neue Supermikroskop die Proteine deutlich getrennt voneinander darstellen.

Foto: Saar-Uni/AG Rettig

Wissenschaftler um Jens Rettig, Professor für zelluläre Neurophysiologie an der Universität des Saarlandes, haben eines dieser neuen Superresolution-Mikroskope der Firma Carl Zeiss Microscopy GmbH getestet. Sie zählen damit zu insgesamt fünf Forscher-Teams weltweit, die das Gerät vorab nutzen durften.

„Um Zellen zu erforschen, kann man auf das Mikroskopieren nicht verzichten“, weiß Jens Rettig, Professor für zelluläre Neurophysiologie an der Saar-Universität. „Wenn man Details einer Zelle, zum Beispiel Zellorganellen wie die Mitochondrien, gut erkennen will, ist die Auflösung eines Mikroskops von entscheidender Bedeutung.“ Mit der Auflösung ist die Fähigkeit gemeint, zwei Strukturen deutlich getrennt voneinander darzustellen.
„Dieser Technik sind allerdings Grenzen gesetzt. Zwei Strukturen können nur dann deutlich aufgelöst werden, wenn sie mehr als 200 Nanometer auseinander liegen“, erläutert der Homburger Professor weiter. „Dies ist der 5000. Teil eines Millimeters und mag sehr klein erscheinen. Viele Bestandteile in einer Zelle, die für unsere Arbeit wichtig sind, sind aber noch wesentlich kleiner als diese Distanz.“

Die Homburger Physiologen konnten in Kooperation mit der Carl Zeiss Microscopy GmbH das neue Superresolution-Mikroskop ELYRA in der Entwicklungsphase testen. Das Gerät zählt zu einer neuen Fluoreszenzmikroskop-Generation und kann Details im Inneren einer Zelle sichtbar machen, die nur 10 Nanometer groß sind. „Das ist in diesem Bereich ein großer Fortschritt“, kommentiert Jens Rettig die technische Entwicklung. Im Gegensatz zu Elektronenmikroskopen, die eine noch höhere Auflösung besitzen, können die Forscher mit dem neuen Gerät auch lebende Zellen untersuchen. Die Forscher der Saar-Uni zählen weltweit zu insgesamt fünf Teams, die mit dem Mikroskop vor der Markteinführung gearbeitet haben.
„Wir haben das Mikroskop in unserem Laboralltag auf Stärken und Schwächen hin untersucht“, erläutert Rettig. Auf diese Weise haben die Wissenschaftler dazu beigetragen, das Gerät zu optimieren. Zur Markteinführung haben die Homburger Physiologen den Prototypen gegen das verbesserte Serienmodell eingetauscht. In der Zwischenzeit haben sie sogar ein weiteres Superresolution-Mikroskop eingeworben. Die Kosten in Höhe von 900.000 Euro hierfür haben sich die Saar-Universität, das Land und die Deutsche Forschungsgemeinschaft geteilt. Die Forscher sind somit die Einzigen in der Region, die mit zwei dieser neuen Geräte arbeiten können.

Rettig und sein Team erforschen die Kommunikation der Nervenzellen untereinander. Sie interessieren sich insbesondere für die molekularen Prozesse, die am synaptischen Spalt auftreten – dort wo eine Nervenzelle Neurotransmitter ausschüttet, um die Nachbarzelle zu aktivieren und so den Reiz weiterzuleiten. Die neuen Mikroskope können ihnen dabei helfen, neuronale Prozesse des Gehirns besser zu verstehen. Zudem möchten die Physiologen neue Erkenntnisse darüber gewinnen, wie Immunzellen Infektionen bekämpfen.

Fragen beantwortet:
Professor Jens Rettig
Cellular Neurophysiology
Tel.: 06841 / 16-26485
E-Mail: jrettig(at)uks.eu

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie