Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln neue Methode zur Identifikation glykosylierter Proteine

28.05.2010
Viele Prozesse in unserem Körper werden durch nachträgliche Veränderungen von Proteinen gesteuert. Die Identifikation solcher Modifikationen ist daher essentiell für die weitere Erforschung unseres Organismus.

Wissenschaftler des Max-Planck-Instituts für Biochemie in Martinsried haben jetzt einen weiteren entscheidenden Beitrag dazu geleistet: Mit einer neuen Methode haben sie über 6.000 glykosylierte Proteinstellen in verschiedenen Geweben identifiziert und somit eine wichtige Grundlage für das bessere Verständnis aller Lebensvorgänge geschaffen. (Cell, 28. Mai 2010).

Zahlreiche biologische Mechanismen wie die Immunabwehr, der programmierte Zelltod oder die Entstehung von Krankheiten beruhen darauf, dass einzelne Bausteine von Proteinen, die Aminosäuren, nachträglich verändert werden. Diesen Prozess nennen Wissenschaftler „posttranslationale Proteinmodifikation“. Obwohl sich die Technologien im Bereich der Proteinforschung in den letzten Jahren rasant entwickelt haben, war es Forschern bisher nur eingeschränkt möglich, solche modifizierten Proteinstellen zu identifizieren. Vor allem die Veränderung von Proteinen durch Glykosylierung – die Bindung von Kohlenhydraten an einzelne Aminosäuren – war weitgehend unerforscht. Doch gerade sie ist einer der bedeutendsten Mechanismen zur Veränderung von Proteinen und spielt eine wichtige Rolle beim Aufbau komplexer Organe und Organismen. Unterlaufen bei der Proteinmodifikation Fehler oder findet sie unkontrolliert statt, hat das oft Krankheiten wie zum Beispiel Alzheimer oder die Prionkrankheit zur Folge.

Jetzt konnten Wissenschaftler der Abteilung „Proteomics und Signaltransduktion“ des Max-Planck-Instituts für Biochemie, die von Matthias Mann geleitet wird, Licht ins Dunkel bringen: Sie haben eine auf Massenspektrometrie basierende Methode entwickelt, welche die Identifikation von N-glykosylierten Proteinstellen in verschiedenen Geweben ermöglicht. Die N-Glykosylierung ist eine spezifische Form der Glykosylierung, bei der die Kohlenhydrate an einen bestimmten Proteinbaustein, die Aminosäure Asparagin (abgekürzt mit „N“), binden.

Die neu entwickelte Methode beruht auf einem Filterverfahren, mit dem auch schwer zugängliche Proteine aus biologischem Material extrahiert werden können. Dieses Verfahren kombinierten die Forscher mit dem Einsatz hochauflösender Massenspektrometer, wodurch es ihnen gelang, 6.367 N-glykosylierte Proteinstellen zu identifizieren. Außerdem konnten sie bestimmte regelmäßig wiederkehrende Abschnitte (Sequenzmotive) herausarbeiten, die künftig als Erkennungsmuster für modifizierte Proteine dienen können.

Diese Erkenntnisse stellen wichtige Fortschritte für die Proteomik dar, so die Forscher, denn sie helfen dabei, die Vorgänge innerhalb des menschlichen Körpers besser zu verstehen. Zudem könnten sie auch für die Erforschung von Krankheiten eine zentrale Rolle spielen. So gelang es, einige veränderte Proteinstellen zu identifizieren, die mit verschiedenen Erkrankungen in Zusammenhang stehen: Zum Beispiel entdeckten die Forscher bisher unbekannte N-Glykosylierungsstellen an Proteinen, die eine wesentliche Rolle bei der Alzheimer-Krankheit spielen. Da die N-Glykosylierung an vielen Prozessen beteiligt ist, die bei Alzheimer gestört sind, vermuten die Wissenschaftler, dass diese Form der Proteinmodifikation die Erkrankung direkt verursacht oder zumindest entscheidenden Einfluss auf ihren Verlauf nimmt. Die Ergebnisse dieser Studie könnten somit für die weitere Erforschung der Krankheit von entscheidender Bedeutung sein und als Basis für mögliche Therapieansätze dienen, so die Hoffnung der Max-Planck-Forscher. [UD]

Originalveröffentlichung:
D. Zielinska, F. Gnad, J. Wisniewski, M. Mann:
Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints.

Cell, 28. Mai 2010.

Kontakt:
Prof. Dr. Matthias Mann
Proteomics und Signaltransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: mmann@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/news/index.html
http://www.biochem.mpg.de/mann

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistente Erreger in Haushaltsgeräten
16.02.2018 | Hochschule Rhein-Waal

nachricht Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt
16.02.2018 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics