Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken Turbo-Schalter der Kalziumpumpe in biologischen Zellen

22.10.2012
Die lebenswichtige Kalziumpumpe in unseren Körperzellen besitzt einen Turbo-Schalter.

Das hat ein dänisch-britisches Forscherteam bei Untersuchungen an der Hamburger DESY-Röntgenlichtquelle DORIS und der Europäischen Synchrotronstrahlungsquelle ESRF in Grenoble entdeckt. Der Ein-Aus-Schalter der Pumpe hat demnach noch eine zuvor unbekannte dritte Stellung, bei der die Pumpe in den Turbo-Gang schaltet. Die Gruppe um Henning Tidow von der Universität Aarhus und Lisbeth Poulsen von der Universität Kopenhagen stellt ihre Untersuchungen im britischen Fachjournal „Nature" vor (online vorab veröffentlicht).

„Die Entdeckung verbessert nicht nur das Verständnis eines fundamentalen Mechanismus in der Biologie aller höheren Lebewesen, sondern könnte auch einmal eine bessere Behandlung bestimmter Krankheiten ermöglichen, bei denen der Kalziumhaushalt gestört ist", betont Tidow. Die Forscher hatten die Messstation des Europäischen Molekularbiologie-Labors EMBL an DORIS genutzt.

Das Element Kalzium spielt bei zahlreichen Lebensprozessen eine zentrale Rolle, etwa bei der Zellteilung, dem Tag-Nacht-Rhythmus und bei der Kommunikation von Zellen. Entscheidend ist dabei ein Gefälle der Kalziumkonzentration, die normalerweise außerhalb der Zelle hoch und in der Zelle niedrig ist. Für dieses Gefälle sorgt unter anderem eine Kalziumpumpe, die in allen höheren Organismen (Eukaryoten) vorkommt – von der Brennnessel bis zum Blauwal. Beispielsweise unter Stress steigt die Kalziumkonzentration in der Zelle an und löst damit eine entsprechende Reaktion aus. Anschließend muss die Konzentration wieder gesenkt werden.

„Der Kalziumtransport aus der Zelle benötigt viel Energie. Daher ist es wichtig, dass die Pumpe nur aktiviert wird, wenn nötig", erläutert Poulsen. Die als PMCA (Plasma-Membran-Kalzium-ATPase) bezeichnete Pumpe besitzt daher einen Schalter, der vom Protein Calmodulin betätigt wird. Bindet Kalzium an Calmodulin, ändert es dieses seine Form, so dass es an eine Bindungsstelle der zelleigenen Kalziumpumpe andocken kann und diese somit aktiviert. Steigt die Kalziumkonzentration in der Zelle, werden so mehr und mehr Pumpen angeschaltet.

Die Forscher um Tidow hatten sich den gesamten Schaltkomplex im Röntgenlicht angeschaut, um seine molekulare Struktur zu enthüllen. Die Wissenschaftler wählten dazu den Schaltkomplex aus Zellen der Pflanze Ackerschmalwand (Arabidopsis thaliana), den sie zunächst in Kristallform und anschließend in einer Lösung untersuchten, was der natürlichen Umgebung des Moleküls näher kommt. „Auf der Grundlage dieser Analyse konnten wir ein detailliertes dreidimensionales Modell jenes Bereichs der Kalziumpumpe erstellen, der mit Calmodulin interagiert", berichtet Tidow. „Zu unserer großen Überraschung stellten wir fest, dass die Kalziumpumpe zwei Bindungsstellen für Calmodulin besitzt und nicht nur eine wie bislang angenommen."

Der Schaltkomplex besteht demnach aus einer hantelartigen Struktur mit zwei Calmodulin-Bindungsstellen. Um herauszufinden, ob die zweite Bindungsstelle eine biologische Bedeutung hat, testen die Forscher Pumpen, bei denen sie einen Schalter lahmgelegt hatten. Tatsächlich konnten diese Pumpen nicht mehr mit voller Kraft laufen. „Unsere Ergebnisse zeigen, dass die Kalziumpumpe in drei Schritten gesteuert wird", erläutert Poulsen. „Sie ist aus, wenn kein Calmodulin an den Schaltkomplex gebunden ist. Die Pumpe läuft mit mittlerer Geschwindigkeit, sobald eine Bindungsstelle besetzt ist, und mit voller Geschwindigkeit, wenn an beiden Stellen Calmodulin gebunden ist."

So wird die Pumpe schrittweise aktiviert, je nachdem, wie viel Kalzium in der Zelle vorhanden ist. Steigt die Kalziumkonzentration an, läuft die Pumpe zunächst energieeffizient mit moderater Geschwindigkeit. Droht das Kalzium eine für die Zelle gefährliche Menge zu erreichen, wirft die Pumpe den Turbo an und ist in der Lage, die Konzentration sehr schnell zu reduzieren.

Bioinformatische Analysen ergaben, dass dieser Doppelschalter nicht nur bei allen Pflanzenarten vorkommt, sondern überhaupt bei allen Zellen mit Zellkern (Eukaryoten) vorhanden ist. „Die Studie zeigt, wie wertvoll die Einbindung der Strukturbiologie in die interdisziplinäre Forschung ist", betont Poul Nissen von der Universität Aarhus. Als nächstes wollen die Forscher die Struktur der gesamten Kalziumpumpe entschlüsseln.

Originalveröffentlichung

A bimodular mechanism of calcium control in eukaryotes; Henning Tidow, Lisbeth R. Poulsen et al.; Nature 2012 (online vorab veröffentlicht); DOI: 10.1038/nature11539

Wissenschaftliche Ansprechpartner

Henning Tidow, PUMPkin-centret, Universität Aarhus, +45 89425262 het@mb.au.dk

Lisbeth Rosager Poulsen, PUMPkin-centret, Universität Kopenhagen,+45 35332595 lrpo@life.ku.dk

Michael Broberg Palmgren, PUMPkin-centret, Universität Kopenhagen, +45 35332592, palmgren@life.ku.dk

Poul Nissen, Direktor PUMPkin centre, Universität Aarhus, +45 28992295, pn@mb.au.dk

Thomas Zoufal | EurekAlert!
Weitere Informationen:
http://www.desy.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie