Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschende kontrollieren Anhaftung von E. coli-Bakterien

02.12.2014

Ein Forschungsteam der Christian-Albrechts-Universität zu Kiel (CAU) und der Goethe-Universität Frankfurt hat gemeinsam eine künstliche Oberfläche geschaffen, auf der die Anhaftung von E. coli-Bakterien gesteuert werden kann.

Die nur etwa vier Nanometer dünne Schicht imitiert den Zuckermantel (Glycokalyx) von Zellen, an den Bakterien beispielsweise bei einer Infektion binden. Dieses Andocken lässt sich nun durch Licht ein- und ausschalten. Damit sind die Wissenschaftler nahe daran zu verstehen, wie Zucker (Kohlenhydrate) und bakterielle Infektionen zusammenhängen. Ihre Forschungsergebnisse zieren den Titel der neuen Ausgabe des renommierten Fachmagazins „Angewandte Chemie“.


Rastertunnelmikroskopaufnahme von einer Kultur Escherichia Coli

Quelle: NIAID

Die Bindung von Zellen an andere Zellen oder an Oberflächen ist lebenswichtig für Organismen, beispielsweise für die Entwicklung von inneren Organen und von Geweben. Aber auch an Krankheit und Infektionen sind solche Mechanismen beteiligt. Die im Experiment eingesetzten E. coli-Bakterien können Harnwegsinfektionen, Hirnhautentzündungen, Sepsis und weitere schwerwiegende Erkrankungen auslösen. Um diese Krankheiten verstehen und behandeln zu können, müssen Forscherinnen und Forscher die molekularen Vorgänge entschlüsseln, die es bakteriellen Zellen ermöglichen, an gesunde Wirtszellen anzudocken.

Häufig geschieht dies über Proteine, die nach einem komplizierten „Pass-Prinzip“ (vereinfacht: „Schlüssel-Schloss-Prinzip“) mit Kohlenhydratstrukturen auf der Wirtszelloberfläche wechselwirken. Die Kieler und Frankfurter Studie zeigt nun erstmals, dass dafür die räumliche Ausrichtung der Kohlenhydratstrukturen entscheidend ist. In der natürlichen Glycokalyx, einer nur nanometerdünnen Mehrfachzucker-Schicht, die alle Zellen umgibt, sind die Verhältnisse allerdings noch zu komplex, um herauszufinden wie Proteine und Kohlenhydrate zueinanderfinden.

Professorin Thisbe K. Lindhorst, Chemikerin an der Uni Kiel, baut mit ihrem Team im Sonderforschungsbereich 677 „Funktion durch Schalten“ Moleküle, die, bestrahlt mit Licht unterschiedlicher Wellenlängen, als biologische Schalter funktionieren. Gemeinsam mit der Arbeitsgruppe um den Oberflächenspezialisten Professor Andreas Terfort (Uni Frankfurt) hat sie nun ein System hergestellt, mit dem die Ausrichtung der Zucker-Andockpunkte und damit die Bindung von E. coli-Bakterien kontrolliert werden kann.

Dazu versahen die Wissenschaftlerinnen und Wissenschaftler eine extrem dünne Goldoberfläche mit einem genau definierten Zuckermantel, der an Azobenzol gekoppelt ist. Das ist ein Kohlenwasserstoff, der eine Stickstoffbrücke enthält, die lichtgesteuert wie ein Gelenk funktioniert. Darüber lassen sich nun die Bindungseigenschaften des Zuckermantels schalten: Bestrahlen die Forschenden ihr System mit Licht einer Wellenlänge von 365 Nanometern, können sich erheblich weniger krankmachende Bakterienzellen an die künstliche Oberfläche anheften.

Die Zuckermoleküle drehen sich dabei gewissermaßen von den Bakterien weg und können nicht mehr erkannt werden. Beim „Einschalten“ wiederum mit 450 Nanometer langen Lichtwellen orientieren sich die Strukturen wieder derart, dass Bakterienzellen erneut andocken können. So lässt sich die Anhaftung von E. coli kontrollieren.

„Durch den Einsatz eines Schichtsystems auf einer festen Oberfläche in Kombination mit einem Photo-Gelenk lässt sich die komplexe Dynamik einer realen Glycokalyx auf die wesentlichen Prozesse reduzieren und so verstehen“, erklärt Terfort. „Dieser neue Ansatz sollte sich auch auf andere biologische Grenzflächensysteme übertragen lassen.“

„Anhand unseres Modellsystems lassen sich Erkennungs- und Bindungseffekte der Glycokalyx sehr definiert und unter einem ganz neuartigen Blickwinkel untersuchen“, sagt Lindhorst. „Wenn wir lernen, die Glycokalyx in einem Zusammenhang von Gesundheit und Heilung zu beeinflussen, wird dies zu einer Revolution in der Medizinischen Chemie führen.“

Originalpublikation
Switching of bacterial adhesion to a glycosylated surface by reversible reorientation of the carbohydrate ligand. Theresa Weber, Vijayanand Chandrasekaran, Insa Stamer, Mikkel B. Thygesen, Andreas Terfort and Thisbe K. Lindhorst. Angew. Chem. 48/2014. DOI: 10.1002/ange.201409808 und 10.1002/anie.201409808 (Angew. Chem. Int. Ed.)

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-395-1.jpg
Bildunterschrift: Links: E. coli-Bakterien können über das Protein FimH an den Zuckermolekülen der künstlichen Glycokalix andocken. Rechts: Bei Bestrahlung mit Licht einer Wellenlänge von 365 Nanometern knicken die Zuckermoleküle auf der Oberfläche weg und können von den Proteinen nicht erkannt werden. Die Bakterien können dann nicht mehr an die „Wirtszelle“ andocken.
Abbildung/Copyright: Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

http://www.uni-kiel.de/download/pm/2014/2014-395-2.jpg
Bildunterschrift: Kontrollierte Bindung: Die Anhaftung von Bakterien an Zuckermolekülen auf dem Glycokalyx-Modell kann durch Licht umkehrbar gesteuert werden.
Abbildung/Copyright: Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

http://www.uni-kiel.de/download/pm/2014/2014-395-3.jpg
Bildunterschrift: Rastertunnelmikroskopaufnahme von einer Kultur Escherichia Coli
Quelle: NIAID

http://www.uni-kiel.de/download/pm/2014/2014-395-4.jpg
Bildunterschrift: Thisbe K. Lindhorst (Foto) und ihr Team kontrollieren die Anhaftung von E. coli-Bakterien durch schaltbare Zuckermoleküle.
Foto/Copyright: Stefan Kolbe

http://www.uni-kiel.de/download/pm/2014/2014-395-5.jpg
Bildunterschrift: Oberflächenspezialist Andreas Terfort von der Goethe Universität Frankfurt
Foto/Copyright: Larissa Zherlitsyna

Kontakt
Prof. Dr. Thisbe K. Lindhorst
Christian-Albrechts-Universität zu Kiel
Otto Diels-Institut für Organische Chemie
Tel.: 0431/880-2023
E-Mail: tklind@oc.uni-kiel.de

Prof. Dr. Andreas Terfort
Goethe-Universität Frankfurt
Tel: 069/798-29180
E-Mail: aterfort@chemie.uni-frankfurt.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics