Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschen, wo Mikroskope an ihre Grenzen stoßen

18.08.2014

Das Leibniz-Institut für Ostseeforschung Warnemünde (IOW) und das European Neuroscience Institute in Göttingen haben ihre Techniken kombiniert. Mit dem neu entwickelten Ansatz lassen sich Vorgänge in kleinsten Bereichen von Zellen viel genauer untersuchen.

Neurowissenschaften und Meeresforschung – zwei wissenschaftliche Disziplinen, die auf den ersten Blick nicht viel gemein haben. Doch gerade im Kleinen – auf der Ebene einzelner Zellen – gibt es gemeinsame Ziele. So besteht in beiden Forschungsbereichen ein großes Interesse an innovativen Mikroskopie-Methoden, die vor allem die Strukturen und den inneren Aufbau von Zellen noch besser auflösen.

Prof. Dr. Silvio O. Rizzoli vom European Neuroscience Institute in Göttingen hatte deshalb die Idee, in Zusammenarbeit mit Dr. Angela Vogts vom IOW eine neue, noch leistungsfähigere Untersuchungsmethode zu entwickeln, indem zwei Spitzentechnologien kombiniert werden: Die STED-Mikroskopie der Göttinger und die Sekundärionenmassenspektrometrie (SIMS) aus Warnemünde. Die neue Methode liefert einzigartige, noch genauere Einblicke in die Vorgänge im Inneren von Zellen und wurde im renommierten Fachmagazin Nature Communications veröffentlicht.

Bei der STED-Mikroskopie (STED = stimulated emission depletion) wird das von der zu untersuchenden Probe emittierte Licht durch einen ringförmigen Laser am Rand ausgeblendet, so dass der Bereich von Interesse wie durch ein Schlüsselloch betrachtet wird. Dies ermöglicht die physikalischen Grenzen der normalen Lichtmikrokopie zu durchbrechen. Es lassen sich damit zum Beispiel Teile von Gehirnzellen betrachten, die 1000 Mal kleiner sind als der Durchmesser eines Haares. Prof. Dr. Silvio O. Rizzoli ist in Göttingen Leiter der Arbeitsgruppe STED-Mikroskopie synaptischer Funktionen. Seine Arbeitsgruppe nutzt die hohe laterale Auflösung der STED-Mikroskopie, um die Funktionsweise synaptischer Vesikel zu beleuchten. Diese Organellen dienen im Gehirn als Speicher für Neurotransmitter, das sind chemische Verbindungen, die zur Signalübermittlung dienen.

Das IOW brachte seine Expertise aus dem NanoSIMS-Labor in das Projekt ein. Denn seit Ende 2011 steht im IOW ein echtes Schwergewicht der Analytik – das CAMECA NanoSIMS 50L, eines von nur vier vergleichbaren Hochleistungsmessgeräten in Deutschland und das einzige im Ostseeraum. Im Namen – „SIMS“ steht für Sekundärionenmassenspektrometer – versteckt sich das Funktionsprinzip der Anlage.

Die zu untersuchende Probe wird dabei kontinuierlich mit einem fokussierten Strahl aus sogenannten Primärionen beschossen. Dieses Miniaturbombardement löst Atome und Moleküle aus der Oberfläche der Probe, die zum Teil geladen sind. Diese Sekundärionen werden dann im Massenspektrometer identifiziert. Auf diese Weise können im NanoSIMS-Labor unter Leitung von Dr. Angela Vogts die genaue stoffliche Zusammensetzung einzelner Zellen – beispielsweise von im Meer lebenden Bakterien – analysiert und Markierungsexperimente durchgeführt werden.

Denn sobald ein Mikroorganismus eine isotopenmarkierte Substanz aufgenommen hat, können die IOW-WissenschaftlerInnen dank NanoSIMS die Stoffwechselwege genau verfolgen, also wie und in was die Zelle die betreffende Substanz weiterverarbeitet.

Werden beide Techniken bei gleicher räumlicher Auflösung auf die gleiche Probe angewandt, eröffnen sich völlig neue, noch genauere Einblicke in das Innere von Zellen – ganz gleich ob Hirnzelle oder marines Bakterium. Mit den optischen Informationen aus der STED-Mikroskopie und den zusätzlichen Informationen über die elementare und isotopische Zusammensetzung aus dem NanoSIMS können einzelne Zellbereiche noch genauer unter die Lupe genommen werden.

So ist es mit der neuen Methode im Gegensatz zur konventionellen Mikroskopie nun möglich, die genaue Struktur und Organisation innerhalb einer Zelle sichtbar zu machen. Beispielsweise konnten die Wissenschaftler zeigen, dass die neue Methode nun neun klar unterscheidbare aktive Bereiche - Zellregionen, in denen gerade neue Strukturen aufgebaut werden - unterscheidet, während die herkömmliche Technik nur zwei unscharfe Flecken zeigt.

Dies eröffnet die Möglichkeit, Informationen über Stoffumsätze in kleinsten Zellbereichen zu untersuchen, um Abläufe besser zu verstehen. Ein solches Wissen ist wertvoll für die Erforschung von Mechanismen im Gehirn, aber auch von Stoffwechselwegen in Mikroorganismen der Ostsee.

Prof. Dr. Silvio O. Rizzoli wird weiter mit den KollegInnen des Leibniz-Instituts für Ostseeforschung (IOW) zusammenarbeiten. Angedacht wurde zum Beispiel die Bildung von Giftstoffen durch Cyanobakterien, auch bekannt als Blaualgen, genauer zu untersuchen.

Kontakt:

Dr. Angela Vogts, Leiterin NanoSIMS Labor, IOW
(Tel.: 0381 / 5197 353, Email: angela.vogts@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Prof. Silvio Rizzoli, European Neuroscience Institute
(Tel.: 0551 / 39 33630, Email: srizzol@gwdg.de)

Originalpublikation :

Sinem K. Saka, Angela Vogts, Katharina Kröhnert, François Hillion, Silvio O Rizzoli, Johannes T. Wessels. Correlated optical and isotopic nanoscopy. Nature Communications 5, Article number: 3664, doi:10.1038/ncomms4664, 10.04.2014.

Pressemitteilung Göttingen:

http://www.med.uni-goettingen.de/presseinformationen/presseinformationen_20817.a...

Das European Neuroscience Institute in Göttingen ist eine Kooperation zwischen dem Universitätsmedizinischen Zentrum der Georg-August-University Göttingen und der Max-Planck Gesellschaft. Das Institut widmet sich der experimentellen Erforschung der Funktionen und Krankheiten des Nervensystems.

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 89 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 17.500 MitarbeiterInnen, davon sind ca. 8.800 WissenschaftlerInnen. Der Gesamtetat der Institute liegt bei 1,53 Mrd. Euro, die Drittmittel betragen rund 350 Mio. Euro pro Jahr. (www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie