Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschen, wo Mikroskope an ihre Grenzen stoßen

18.08.2014

Das Leibniz-Institut für Ostseeforschung Warnemünde (IOW) und das European Neuroscience Institute in Göttingen haben ihre Techniken kombiniert. Mit dem neu entwickelten Ansatz lassen sich Vorgänge in kleinsten Bereichen von Zellen viel genauer untersuchen.

Neurowissenschaften und Meeresforschung – zwei wissenschaftliche Disziplinen, die auf den ersten Blick nicht viel gemein haben. Doch gerade im Kleinen – auf der Ebene einzelner Zellen – gibt es gemeinsame Ziele. So besteht in beiden Forschungsbereichen ein großes Interesse an innovativen Mikroskopie-Methoden, die vor allem die Strukturen und den inneren Aufbau von Zellen noch besser auflösen.

Prof. Dr. Silvio O. Rizzoli vom European Neuroscience Institute in Göttingen hatte deshalb die Idee, in Zusammenarbeit mit Dr. Angela Vogts vom IOW eine neue, noch leistungsfähigere Untersuchungsmethode zu entwickeln, indem zwei Spitzentechnologien kombiniert werden: Die STED-Mikroskopie der Göttinger und die Sekundärionenmassenspektrometrie (SIMS) aus Warnemünde. Die neue Methode liefert einzigartige, noch genauere Einblicke in die Vorgänge im Inneren von Zellen und wurde im renommierten Fachmagazin Nature Communications veröffentlicht.

Bei der STED-Mikroskopie (STED = stimulated emission depletion) wird das von der zu untersuchenden Probe emittierte Licht durch einen ringförmigen Laser am Rand ausgeblendet, so dass der Bereich von Interesse wie durch ein Schlüsselloch betrachtet wird. Dies ermöglicht die physikalischen Grenzen der normalen Lichtmikrokopie zu durchbrechen. Es lassen sich damit zum Beispiel Teile von Gehirnzellen betrachten, die 1000 Mal kleiner sind als der Durchmesser eines Haares. Prof. Dr. Silvio O. Rizzoli ist in Göttingen Leiter der Arbeitsgruppe STED-Mikroskopie synaptischer Funktionen. Seine Arbeitsgruppe nutzt die hohe laterale Auflösung der STED-Mikroskopie, um die Funktionsweise synaptischer Vesikel zu beleuchten. Diese Organellen dienen im Gehirn als Speicher für Neurotransmitter, das sind chemische Verbindungen, die zur Signalübermittlung dienen.

Das IOW brachte seine Expertise aus dem NanoSIMS-Labor in das Projekt ein. Denn seit Ende 2011 steht im IOW ein echtes Schwergewicht der Analytik – das CAMECA NanoSIMS 50L, eines von nur vier vergleichbaren Hochleistungsmessgeräten in Deutschland und das einzige im Ostseeraum. Im Namen – „SIMS“ steht für Sekundärionenmassenspektrometer – versteckt sich das Funktionsprinzip der Anlage.

Die zu untersuchende Probe wird dabei kontinuierlich mit einem fokussierten Strahl aus sogenannten Primärionen beschossen. Dieses Miniaturbombardement löst Atome und Moleküle aus der Oberfläche der Probe, die zum Teil geladen sind. Diese Sekundärionen werden dann im Massenspektrometer identifiziert. Auf diese Weise können im NanoSIMS-Labor unter Leitung von Dr. Angela Vogts die genaue stoffliche Zusammensetzung einzelner Zellen – beispielsweise von im Meer lebenden Bakterien – analysiert und Markierungsexperimente durchgeführt werden.

Denn sobald ein Mikroorganismus eine isotopenmarkierte Substanz aufgenommen hat, können die IOW-WissenschaftlerInnen dank NanoSIMS die Stoffwechselwege genau verfolgen, also wie und in was die Zelle die betreffende Substanz weiterverarbeitet.

Werden beide Techniken bei gleicher räumlicher Auflösung auf die gleiche Probe angewandt, eröffnen sich völlig neue, noch genauere Einblicke in das Innere von Zellen – ganz gleich ob Hirnzelle oder marines Bakterium. Mit den optischen Informationen aus der STED-Mikroskopie und den zusätzlichen Informationen über die elementare und isotopische Zusammensetzung aus dem NanoSIMS können einzelne Zellbereiche noch genauer unter die Lupe genommen werden.

So ist es mit der neuen Methode im Gegensatz zur konventionellen Mikroskopie nun möglich, die genaue Struktur und Organisation innerhalb einer Zelle sichtbar zu machen. Beispielsweise konnten die Wissenschaftler zeigen, dass die neue Methode nun neun klar unterscheidbare aktive Bereiche - Zellregionen, in denen gerade neue Strukturen aufgebaut werden - unterscheidet, während die herkömmliche Technik nur zwei unscharfe Flecken zeigt.

Dies eröffnet die Möglichkeit, Informationen über Stoffumsätze in kleinsten Zellbereichen zu untersuchen, um Abläufe besser zu verstehen. Ein solches Wissen ist wertvoll für die Erforschung von Mechanismen im Gehirn, aber auch von Stoffwechselwegen in Mikroorganismen der Ostsee.

Prof. Dr. Silvio O. Rizzoli wird weiter mit den KollegInnen des Leibniz-Instituts für Ostseeforschung (IOW) zusammenarbeiten. Angedacht wurde zum Beispiel die Bildung von Giftstoffen durch Cyanobakterien, auch bekannt als Blaualgen, genauer zu untersuchen.

Kontakt:

Dr. Angela Vogts, Leiterin NanoSIMS Labor, IOW
(Tel.: 0381 / 5197 353, Email: angela.vogts@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Prof. Silvio Rizzoli, European Neuroscience Institute
(Tel.: 0551 / 39 33630, Email: srizzol@gwdg.de)

Originalpublikation :

Sinem K. Saka, Angela Vogts, Katharina Kröhnert, François Hillion, Silvio O Rizzoli, Johannes T. Wessels. Correlated optical and isotopic nanoscopy. Nature Communications 5, Article number: 3664, doi:10.1038/ncomms4664, 10.04.2014.

Pressemitteilung Göttingen:

http://www.med.uni-goettingen.de/presseinformationen/presseinformationen_20817.a...

Das European Neuroscience Institute in Göttingen ist eine Kooperation zwischen dem Universitätsmedizinischen Zentrum der Georg-August-University Göttingen und der Max-Planck Gesellschaft. Das Institut widmet sich der experimentellen Erforschung der Funktionen und Krankheiten des Nervensystems.

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 89 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 17.500 MitarbeiterInnen, davon sind ca. 8.800 WissenschaftlerInnen. Der Gesamtetat der Institute liegt bei 1,53 Mrd. Euro, die Drittmittel betragen rund 350 Mio. Euro pro Jahr. (www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie