Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Form kommt es an - Jülicher Physiker simulieren die Aufnahme von Nanoteilchen in Zellen

05.02.2014
Die Medizin setzt große Hoffnung in Nanomedikamente, die – gezielt in kranke Zellen eingeschleust – dort Medikamente freisetzen und gesunde Gewebe schonen sollen.

Aktuelle Forschungsergebnisse Jülicher Physiker könnten dabei helfen, Stoffe zu identifizieren, die leicht von Zellen aufgenommen werden können. Die Forscher haben herausgefunden, wie die Form von Nanoteilchen die Aufnahme beeinflusst.


Nanoteilchen können von Zellmembranen in einem mehrstufigen Prozess eingehüllt werden, fanden Jülicher Forscher. Hier: Anhaften einer Würfelfläche an einer Membran mit sehr geringer Membrandeformation

Forschungszentrum Jülich


Diese Grafik zeigt einen Nanowürfel, der tief in die Membran eingebettet ist

Forschungszentrum Jülich

Die Ergebnisse, die auch für die Identifizierung möglicherweise zellschädigender Effekte mancher Nanoteilchen dienlich sein könnten, hat die renommierte Fachzeitschrift "Nano Letters" online veröffentlicht (DOI: 10.1021/nl403949h).

Lebende Zellen sind von einer schützenden Hülle umgeben, der Zellmembran. Sie bildet jedoch keine starre Barriere, sondern ist leicht verformbar, ähnlich wie die Haut einer Seifenblase. Dies ist wichtig, denn eine Zelle ist keine abgeschlossene Einheit, sondern muss Nährstoffe aus ihrer Umgebung aufnehmen und Stoffwechselprodukte ausscheiden können. Dazu kann die Membran sich um große Moleküle und Nanoteilchen wickeln und winzige Bläschen abschnüren, die in die Zellen hinein oder aus ihnen hinaus gelangen.

Diesen Weg möchten sich Mediziner für die Bekämpfung etwa von Krebs zunutze machen und Wirkstoffe so in Form von Nanomedikamenten verpacken, dass sie nur in kranke Zellen eindringen und dort ihre heilsame Wirkung entfalten. Dies würde etwa Nebenwirkungen drastisch reduzieren.

Nanopartikel sind etwa 80.000 Mal kleiner als der Durchmesser eines menschlichen Haares. Jülicher Physiker zeigten nun mit Hilfe von Computersimulationen, dass die Form der winzigen Teilchen die Aufnahme in Zellen entscheidend beeinflusst. "Physikalisch streben Teilchen und Membran eine möglichst große Kontaktfläche bei möglichst geringer Verbiegung an", erläutert Dr. Thorsten Auth vom Jülicher Institute of Complex Systems die Grundlage ihrer Berechnungen. "Nur wenn die Adhäsionsstärke zwischen Teilchen und Membranoberfläche groß genug ist, kann die Biegesteifigkeit der Membran überwunden und das Teilchen von der Membran umhüllt werden. Dies gilt zunächst einmal unabhängig von der genauen Materialzusammensetzung." Mit Hilfe eines Modells, das nur die Größe und Form der Teilchen, die Biegesteifigkeit der Membran sowie die Bindefreudigkeit zwischen Teilchen und Membran berücksichtigt, berechneten die Forscher systematisch, unter welchen Bedingungen Membranen Nanoteilchen einwickeln, unter welchen dies nicht gelingt und wann Membranen die Partikel nur teilweise umhüllen und diese quasi in der Grenzschicht stecken bleiben.

Das Ergebnis: Das Umhüllen der Teilchen durch die Membran kann entweder kontinuierlich oder schrittweise ablaufen. Entscheidend dafür sind das Verhältnis von Länge und Breite der Teilchen und die Weichheit ihrer Rundungen. Konkret: Wenn bei einem runden Teilchen die Adhäsionsstärke die Biegesteifigkeit der Membran übersteigt, wird es in einem kontinuierlichen Prozess komplett eingehüllt, da seine Rundung an jeder Stelle gleich ist. Ein Würfel dagegen kann schon bei einer sehr geringen Adhäsionsenergie zunächst mit einer Fläche an der Membran anhaften. Mehr Energie ist nötig, damit sich die Membran um die Kanten und die vier Seitenflächen herum anlegt, noch einmal eine stärkere Adhäsionskraft, um schließlich auch die letzten Kanten und die obere Fläche einzuhüllen.

Den Hüllprozess haben die Forscher für verschiedene Formen, von Ellipsen bis Würfeln, mit verschiedenen Seitenverhältnissen und Kantenrundungen untersucht. Systematisch variierten sie dabei das Verhältnis von Länge und Dicke und veränderten die Form der Teilchen Schritt für Schritt von rundlich zu eckig. „Unsere Untersuchungen bilden eine Basis, um durch eine geeignete Wahl der Materialien Teilchen zum Beispiel so zu designen, dass sie komplett von der Zelle aufgenommen werden, oder auch so, dass sie nur an der Membran haften oder nur zum Teil eingehüllt werden“, erläutert Prof. Gerhard Gompper, Direktor am Institute of Complex Systems. „Das birgt Anwendungspotentiale zum Beispiel für Sensormoleküle, die in die Membran eingelagert, aber nicht von der Zelle verschluckt werden sollen, oder für Nanomedikamente, die eine flache Stelle für die anfängliche Bindung, aber keine scharfen Kanten haben sollten, damit sie von der Zelle aufgenommen werden können.“

Originalveröffentlichung:

Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles; Sabyasachi Dasgupta , Thorsten Auth , and Gerhard Gompper;

Nano Lett., Article ASAP, DOI: 10.1021/nl403949h, Publication Date (Web): January 2, 2014

Ansprechpartner:

Dr. Thorsten Auth, Forschungszentrum Jülich, Institute of Complex Systems - Theorie der Weichen Materie und Biophysik (ICS-2)

Tel. 02461 61-1735, E-Mail: t.auth@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-02-05nanoletters.html

- Zur Pressemitteilung des Forschungszentrums Jülich

http://www.fz-juelich.de/ics/DE/Home/home_node.html
- Institute of Complex Systems
http://www.fz-juelich.de/ics/ics-2/DE/Home/home_node.html
- Institutsbereich Theorie der Weichen Materie und Biophysik (ICS-2 / IAS-2)

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie