Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibilität statt Perfektion hilft bei der Erregerabwehr

19.02.2016

Bei der Abwehr von Krankheitserregern kann Flexibilität ein entscheidender Vorteil sein

Wenn ein Fremdstoff in den Körper eindringt, werden Antikörper gebildet, die den Eindringling anhand eines bestimmten Stoffes – dem Antigen - erkennen und bekämpfen. Während der Abwehrreaktion, werden Gedächtniszellen gebildet. Diese sorgen dafür, dass bei einem erneuten Auftreten des Erregers schneller und stärker reagiert werden kann.


Lymphknoten einer infizierten Maus. Die verschiedenfarbigen Cluster sind Keimzentren mit unterschiedlichen Dominanz-Leveln

© Gabriel D. Victora

Einer in „Science“ veröffentlichten Studie von Wissenschaftler des Whitehead Institutes for Biomedical Research, Cambridge, USA und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig, zufolge, ist es entgegen bisheriger Annahmen jedoch nicht so, dass ausschließlich nur Antikörper mit einem extrem passgenauen Schlüssel-Schloss-Prinzip für ein spezifisches Antigen gebildet werden.

Antikörper werden von einer bestimmten Art weißer Blutkörperchen, den B-Zellen oder B-Leukozyten, gebildet, die täglich durch unsere Lymphknoten patrouillieren und nach Pathogenen suchen. Wenn eine B-Zelle mit ihrem Rezeptor an ein Antigen bindet, wird diese Zelle entweder den halbwegs passenden Antikörper direkt produzieren oder sich an der Gründung eines Keimzentrums beteiligen. Keimzentren sind eine Ausbildungsstätte für Antikörper:

Die B-Zellen vermehren sich dort, diversifizieren ihre Antikörper durch Mutation und optimieren ihn durch Selektion. „Dadurch steigert sich über die Zeit die Affinität der Antikörper zu den Antigenen. Es bleiben quasi nur noch die effektivsten über. Diesen evolutionären Vorgang bezeichnet man als Affinitätsreifung“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“ am HZI.

Im Rahmen eines vom Human Frontiers Science Program geförderten Projekts wollten Meyer-Hermann und sein Kollege Gabriel Victora vom Whitehead Institute for Biomedical Research diese Theorie überprüfen und herausfinden, wie genau es zur Affinitätsreifung kommt.

Dazu kombinierten die Forscher Einzelzellsequenzierung mit Brainbow-Experimenten, einer in der Gehirn- und Entwicklungsforschung oft verwendete Methode. Darin werden die Mutterzellen mit zufälligen fluoreszierenden Proteinen gefärbt, diese geben sie dann an ihre Tochterzellen weiter.

„So lässt sich genau erkennen, welche Abstimmungslinie die Zellen haben und welche Gründerzellen ein Keimzentrum dominieren“, sagt Meyer-Hermann. „Nach dem bisherigen Erkenntnisstand gingen wir davon aus, dass nur wenige Zellen das Keimzentrum gründen und dass der starke Selektionsdruck zu einfarbigen Keimzentren führen sollte.“

Die Resultate der Sequenzierung waren verblüffend: „Bisher ging man von drei bis fünf Gründerzellen pro Keimzentrum aus. Wir haben jetzt gezeigt, dass es eher 100 sind“, sagt Meyer-Hermann. Die Brainbow-Experimente zeigten, dass die Keimzentren nicht so einfarbig werden wie gedacht. Neben einigen Zentren, die im Laufe des Antikörperselektionsprozesses einfarbig wurden, bestanden andere wiederum auch nach langer Zeit immer noch aus verschiedenen Farben.

In diesen Zentren gab es also keine Dominanz eines bestimmten, sondern eine Koexistenz von vielen verschiedenen Antikörpern.

Ein Grund dafür könnte sein, dass es nicht immer von Vorteil ist, sich perfekt auf einen Erreger einzustellen. Schließlich entwickeln sich die Erreger selbst auch ständig weiter. „Je spezifischer die Antikörper wirken, desto schlechter können sie auf Mutationen in den Pathogenen reagieren“, sagt Meyer-Hermann. „Eine gewisse Variabilität und Flexibilität könnte so entscheidend sein, um mit den sich ständig verändernden Pathogenen mitzuhalten“.

Langfristig könnten die Erkenntnisse bei der Entwicklung neuer Impfstoffe helfen, schließlich sind Antikörper eine entscheidende Grundlage für diese. „Wenn wir wüssten, was das Verhältnis von klonal dominanten und diversen Keimzentren beeinflusst, könnten wir in Impfprotokollen die Diversität der induzierten Antikörper an die Mutationsgeschwindigkeit des Erregers anpassen“, sagt Meyer-Hermann.

Originalpublikation:
Jeroen M.J. Tas, Luka Mesin, Giulia Pasqual, Sasha Targ, Johanne T. Jacobsen, Yasuko M. Mano, Casie S. Chen, Jean-Claude Weill, Claude-Agnès Reynaud, Edward P. Browne, Michael Meyer-Hermann, Gabriel D. Victora. Visualizing Antibody Affinity Maturation in Germinal Centers. Science. 2016 Feb 19. DOI: 10.1126/science.aad3439.

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/flexibili... - Pressemitteilung

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Phantom-Lebensräume in der Tiefsee
29.07.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Wie sich die Tomate den pflanzlichen Parasiten Teufelszwirn vom Stängel hält
29.07.2016 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie biologische Vielfalt das Ohr fit macht

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu...

Im Focus: Ultrakompakter Photodetektor

Der Datenverkehr wächst weltweit. Glasfaserkabel transportieren die Informationen mit Lichtgeschwindigkeit über weite Entfernungen. An ihrem Ziel müssen die optischen Signale jedoch in elektrische Signale gewandelt werden, um im Computer verarbeitet zu werden. Forscher am KIT haben einen neuartigen Photodetektor entwickelt, dessen geringer Platzbedarf neue Maßstäbe setzt: Das Bauteil weist eine Grundfläche von weniger als einem Millionstel Quadratmillimeter auf, ohne die Datenübertragungsrate zu beeinträchtigen, wie sie im Fachmagazin Optica nun berichten. (DOI: 10.1364/OPTICA.3.000741)

Die neuentwickelten Photodetektoren, die weltweit kleinsten Photodetektoren für die optische Datenübertragung, eröffnen die Möglichkeit, durch integrierte...

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: Neues Forschungsnetzwerk für Mikrobiomforschung

Mikroben und Viren haben weitreichenden Einfluss auf die Gesundheit von Mensch und Tier. Die neu gegründete "Austrian Microbiome Initiative" (AMICI) fördert die nationale Mikrobiomforschung und vernetzt MedizinerInnen und ForscherInnen verschiedenster Fachrichtungen zur Nutzung von Synergien.

Bakterien, Archaeen, Pilze, Viren – Milliarden von Mikroorganismen leben in Symbiose in und auf Menschen und Tieren. Diese mikroskopisch kleinen Lebewesen...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

BAuA lädt zur Konferenz „Arbeiten im Büro der Zukunft“ ein

29.07.2016 | Veranstaltungen

Fachkongress zu additiven Fertigungsverfahren am 14. und 15. September in Aachen

28.07.2016 | Veranstaltungen

Rheumatologen tagen in Frankfurt: Mehr Forschung für Rheuma gefordert

28.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neues Fräsbearbeitungszentrum mit CFK-Antriebsschlitten für schwer zerspanbare Werkstoffe

29.07.2016 | Maschinenbau

Wie sich die Tomate den pflanzlichen Parasiten Teufelszwirn vom Stängel hält

29.07.2016 | Biowissenschaften Chemie

Gitterstruktur dämpft Vibrationen

29.07.2016 | Maschinenbau