Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibilität statt Perfektion hilft bei der Erregerabwehr

19.02.2016

Bei der Abwehr von Krankheitserregern kann Flexibilität ein entscheidender Vorteil sein

Wenn ein Fremdstoff in den Körper eindringt, werden Antikörper gebildet, die den Eindringling anhand eines bestimmten Stoffes – dem Antigen - erkennen und bekämpfen. Während der Abwehrreaktion, werden Gedächtniszellen gebildet. Diese sorgen dafür, dass bei einem erneuten Auftreten des Erregers schneller und stärker reagiert werden kann.


Lymphknoten einer infizierten Maus. Die verschiedenfarbigen Cluster sind Keimzentren mit unterschiedlichen Dominanz-Leveln

© Gabriel D. Victora

Einer in „Science“ veröffentlichten Studie von Wissenschaftler des Whitehead Institutes for Biomedical Research, Cambridge, USA und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig, zufolge, ist es entgegen bisheriger Annahmen jedoch nicht so, dass ausschließlich nur Antikörper mit einem extrem passgenauen Schlüssel-Schloss-Prinzip für ein spezifisches Antigen gebildet werden.

Antikörper werden von einer bestimmten Art weißer Blutkörperchen, den B-Zellen oder B-Leukozyten, gebildet, die täglich durch unsere Lymphknoten patrouillieren und nach Pathogenen suchen. Wenn eine B-Zelle mit ihrem Rezeptor an ein Antigen bindet, wird diese Zelle entweder den halbwegs passenden Antikörper direkt produzieren oder sich an der Gründung eines Keimzentrums beteiligen. Keimzentren sind eine Ausbildungsstätte für Antikörper:

Die B-Zellen vermehren sich dort, diversifizieren ihre Antikörper durch Mutation und optimieren ihn durch Selektion. „Dadurch steigert sich über die Zeit die Affinität der Antikörper zu den Antigenen. Es bleiben quasi nur noch die effektivsten über. Diesen evolutionären Vorgang bezeichnet man als Affinitätsreifung“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“ am HZI.

Im Rahmen eines vom Human Frontiers Science Program geförderten Projekts wollten Meyer-Hermann und sein Kollege Gabriel Victora vom Whitehead Institute for Biomedical Research diese Theorie überprüfen und herausfinden, wie genau es zur Affinitätsreifung kommt.

Dazu kombinierten die Forscher Einzelzellsequenzierung mit Brainbow-Experimenten, einer in der Gehirn- und Entwicklungsforschung oft verwendete Methode. Darin werden die Mutterzellen mit zufälligen fluoreszierenden Proteinen gefärbt, diese geben sie dann an ihre Tochterzellen weiter.

„So lässt sich genau erkennen, welche Abstimmungslinie die Zellen haben und welche Gründerzellen ein Keimzentrum dominieren“, sagt Meyer-Hermann. „Nach dem bisherigen Erkenntnisstand gingen wir davon aus, dass nur wenige Zellen das Keimzentrum gründen und dass der starke Selektionsdruck zu einfarbigen Keimzentren führen sollte.“

Die Resultate der Sequenzierung waren verblüffend: „Bisher ging man von drei bis fünf Gründerzellen pro Keimzentrum aus. Wir haben jetzt gezeigt, dass es eher 100 sind“, sagt Meyer-Hermann. Die Brainbow-Experimente zeigten, dass die Keimzentren nicht so einfarbig werden wie gedacht. Neben einigen Zentren, die im Laufe des Antikörperselektionsprozesses einfarbig wurden, bestanden andere wiederum auch nach langer Zeit immer noch aus verschiedenen Farben.

In diesen Zentren gab es also keine Dominanz eines bestimmten, sondern eine Koexistenz von vielen verschiedenen Antikörpern.

Ein Grund dafür könnte sein, dass es nicht immer von Vorteil ist, sich perfekt auf einen Erreger einzustellen. Schließlich entwickeln sich die Erreger selbst auch ständig weiter. „Je spezifischer die Antikörper wirken, desto schlechter können sie auf Mutationen in den Pathogenen reagieren“, sagt Meyer-Hermann. „Eine gewisse Variabilität und Flexibilität könnte so entscheidend sein, um mit den sich ständig verändernden Pathogenen mitzuhalten“.

Langfristig könnten die Erkenntnisse bei der Entwicklung neuer Impfstoffe helfen, schließlich sind Antikörper eine entscheidende Grundlage für diese. „Wenn wir wüssten, was das Verhältnis von klonal dominanten und diversen Keimzentren beeinflusst, könnten wir in Impfprotokollen die Diversität der induzierten Antikörper an die Mutationsgeschwindigkeit des Erregers anpassen“, sagt Meyer-Hermann.

Originalpublikation:
Jeroen M.J. Tas, Luka Mesin, Giulia Pasqual, Sasha Targ, Johanne T. Jacobsen, Yasuko M. Mano, Casie S. Chen, Jean-Claude Weill, Claude-Agnès Reynaud, Edward P. Browne, Michael Meyer-Hermann, Gabriel D. Victora. Visualizing Antibody Affinity Maturation in Germinal Centers. Science. 2016 Feb 19. DOI: 10.1126/science.aad3439.

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/flexibili... - Pressemitteilung

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Talk aus dem Labor
24.06.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht MikroRNA verhindert akutes Leberversagen
24.06.2016 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Organisches Liegerad aus 3-D-Drucker gefertigt

Beim Akkuschrauberrennen, das alle zwei Jahre von der Hochschule für angewandte Wissenschaft und Kunst(HAWK) vor rund 5000 Besuchern in Hildesheim ausgerichtet wird, treten Fahrzeuge, die nur von einem gewöhnlichen Akkuschrauber angetrieben werden und auf denen mindestens eine Person mitfahren kann, gegeneinander an. Die Gestaltung der Flitzer steht jedes Mal unter einem speziellen Motto.

Ihre Vorgänger haben große Fußspuren hinterlassen – nun müssen die „Ostfreezers“ zeigen, was sie können: Das Team aus dem Studiengang Maschinenbau und Design...

Im Focus: Erste experimentelle Quantensimulation eines Phänomens der Teilchenphysik

Mit der ersten Quantensimulation einer Gitter-Eichfeldtheorie schlagen Innsbrucker Physiker eine Brücke zwischen Hochenergiephysik und Atomphysik. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert haben.

Die kleinsten bekannten Bausteine der Materie sind die Elementarteilchen, deren Eigenschaften die Teilchenphysik mit dem sogenannten Standardmodell beschreibt....

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Wissenschaftler erzeugen Quantenzustände mit ganzzahligem Spin in photonischem Gitter

Fundamentale Teilcheneigenschaften sichtbar gemacht: Physikern um Prof. Dr. Cornelia Denz von der Westfälischen Wilhelms-Universität Münster ist es gelungen, bestimmte quantenphysikalische Effekte zu erzeugen – mit Licht. Sie konnten erstmals Quantenzustände mit ganzzahligem Spin im Licht durch spezielle optische Wirbel sichtbar machen.

Effekte der Quantenphysik sind schwer fassbar. Einem Team von Physikern um Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der WWU ist es jedoch nun...

Im Focus: Mit Quantensensoren aus Diamant winzige Magnetfelder identifizieren

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF entwickeln hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder im Nanometer-Bereich zu identifizieren. In Zukunft sollen die Sonden zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine.

Die Quantenmechanik ist nicht nur ein spannendes Feld der Grundlagenforschung. Fortschritte in der Quantentechnologie versprechen eine Vielzahl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Deutsches Biomasseforschungszentrum diskutiert Zukunft der Bioenergie

24.06.2016 | Veranstaltungen

Den kleinsten physikalischen Teilchen auf der Spur

23.06.2016 | Veranstaltungen

Die Zahnmedizin vor neuen Herausforderungen

23.06.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Brandenburg will hoch innovative Materialforschung mit Millionen unterstützen

24.06.2016 | Förderungen Preise

Röntgenuntersuchung zeigt: Arsen sammelt sich bei Pflanzen im Zellkern

24.06.2016 | Biowissenschaften Chemie

MikroRNA verhindert akutes Leberversagen

24.06.2016 | Biowissenschaften Chemie