Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibilität statt Perfektion hilft bei der Erregerabwehr

19.02.2016

Bei der Abwehr von Krankheitserregern kann Flexibilität ein entscheidender Vorteil sein

Wenn ein Fremdstoff in den Körper eindringt, werden Antikörper gebildet, die den Eindringling anhand eines bestimmten Stoffes – dem Antigen - erkennen und bekämpfen. Während der Abwehrreaktion, werden Gedächtniszellen gebildet. Diese sorgen dafür, dass bei einem erneuten Auftreten des Erregers schneller und stärker reagiert werden kann.


Lymphknoten einer infizierten Maus. Die verschiedenfarbigen Cluster sind Keimzentren mit unterschiedlichen Dominanz-Leveln

© Gabriel D. Victora

Einer in „Science“ veröffentlichten Studie von Wissenschaftler des Whitehead Institutes for Biomedical Research, Cambridge, USA und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig, zufolge, ist es entgegen bisheriger Annahmen jedoch nicht so, dass ausschließlich nur Antikörper mit einem extrem passgenauen Schlüssel-Schloss-Prinzip für ein spezifisches Antigen gebildet werden.

Antikörper werden von einer bestimmten Art weißer Blutkörperchen, den B-Zellen oder B-Leukozyten, gebildet, die täglich durch unsere Lymphknoten patrouillieren und nach Pathogenen suchen. Wenn eine B-Zelle mit ihrem Rezeptor an ein Antigen bindet, wird diese Zelle entweder den halbwegs passenden Antikörper direkt produzieren oder sich an der Gründung eines Keimzentrums beteiligen. Keimzentren sind eine Ausbildungsstätte für Antikörper:

Die B-Zellen vermehren sich dort, diversifizieren ihre Antikörper durch Mutation und optimieren ihn durch Selektion. „Dadurch steigert sich über die Zeit die Affinität der Antikörper zu den Antigenen. Es bleiben quasi nur noch die effektivsten über. Diesen evolutionären Vorgang bezeichnet man als Affinitätsreifung“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“ am HZI.

Im Rahmen eines vom Human Frontiers Science Program geförderten Projekts wollten Meyer-Hermann und sein Kollege Gabriel Victora vom Whitehead Institute for Biomedical Research diese Theorie überprüfen und herausfinden, wie genau es zur Affinitätsreifung kommt.

Dazu kombinierten die Forscher Einzelzellsequenzierung mit Brainbow-Experimenten, einer in der Gehirn- und Entwicklungsforschung oft verwendete Methode. Darin werden die Mutterzellen mit zufälligen fluoreszierenden Proteinen gefärbt, diese geben sie dann an ihre Tochterzellen weiter.

„So lässt sich genau erkennen, welche Abstimmungslinie die Zellen haben und welche Gründerzellen ein Keimzentrum dominieren“, sagt Meyer-Hermann. „Nach dem bisherigen Erkenntnisstand gingen wir davon aus, dass nur wenige Zellen das Keimzentrum gründen und dass der starke Selektionsdruck zu einfarbigen Keimzentren führen sollte.“

Die Resultate der Sequenzierung waren verblüffend: „Bisher ging man von drei bis fünf Gründerzellen pro Keimzentrum aus. Wir haben jetzt gezeigt, dass es eher 100 sind“, sagt Meyer-Hermann. Die Brainbow-Experimente zeigten, dass die Keimzentren nicht so einfarbig werden wie gedacht. Neben einigen Zentren, die im Laufe des Antikörperselektionsprozesses einfarbig wurden, bestanden andere wiederum auch nach langer Zeit immer noch aus verschiedenen Farben.

In diesen Zentren gab es also keine Dominanz eines bestimmten, sondern eine Koexistenz von vielen verschiedenen Antikörpern.

Ein Grund dafür könnte sein, dass es nicht immer von Vorteil ist, sich perfekt auf einen Erreger einzustellen. Schließlich entwickeln sich die Erreger selbst auch ständig weiter. „Je spezifischer die Antikörper wirken, desto schlechter können sie auf Mutationen in den Pathogenen reagieren“, sagt Meyer-Hermann. „Eine gewisse Variabilität und Flexibilität könnte so entscheidend sein, um mit den sich ständig verändernden Pathogenen mitzuhalten“.

Langfristig könnten die Erkenntnisse bei der Entwicklung neuer Impfstoffe helfen, schließlich sind Antikörper eine entscheidende Grundlage für diese. „Wenn wir wüssten, was das Verhältnis von klonal dominanten und diversen Keimzentren beeinflusst, könnten wir in Impfprotokollen die Diversität der induzierten Antikörper an die Mutationsgeschwindigkeit des Erregers anpassen“, sagt Meyer-Hermann.

Originalpublikation:
Jeroen M.J. Tas, Luka Mesin, Giulia Pasqual, Sasha Targ, Johanne T. Jacobsen, Yasuko M. Mano, Casie S. Chen, Jean-Claude Weill, Claude-Agnès Reynaud, Edward P. Browne, Michael Meyer-Hermann, Gabriel D. Victora. Visualizing Antibody Affinity Maturation in Germinal Centers. Science. 2016 Feb 19. DOI: 10.1126/science.aad3439.

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/flexibili... - Pressemitteilung

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie