Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feintuning im Gehirn

01.07.2015

Vom Tohuwabohu zum geordneten Netzwerk – Freiburger Forscher erklären mit einem Computermodell, wie Nervenzellverbindungen im Sehzentrum geformt werden.

Wenn Menschen nach der Geburt zum ersten Mal die Augen öffnen, existieren schon Nervenzellen im Sehzentrum des Gehirns, die auf gewisse Reize spezialisiert sind – aber sie sind unsystematisch miteinander verbunden. Wie entstehen im Laufe der Zeit neuronale Netzwerke, die ausgeprägt auf bestimmte Eigenschaften des Reizes reagieren?


Durch Seherfahrung verstärken sich Verbindungen zwischen Nervenzellen, die auf ähnliche Reize reagieren (dicke Striche), während andere Verknüpfungen abgeschwächt werden (dünne Striche).

Bildrechte: Stefan Rotter / Bernstein Center Freiburg, 2015

Um diese Entwicklungsschritte besser verstehen und die komplizierten Prozesse der Reorganisation erklären zu können, hat nun ein internationales Forschungsteam ein Computermodell entwickelt, das die biologischen Abläufe genau nachvollzieht.

Die Ergebnisse der Studie von Prof. Dr. Stefan Rotter, Bernstein Center Freiburg (BCF) und Exzellenzcluster BrainLinks-BrainTools der Albert-Ludwigs-Universität, in Zusammenarbeit mit Dr. Claudia Clopath vom Imperial College London/England sind nun in den Fachjournalen PLOS Computational Biology und PLOS ONE erschienen.

„Mit unserem Modell ist es uns erstmals gelungen, typische Eigenschaften von biologischen neuronalen Netzwerken in Tieren und Menschen in einer Computersimulation sinnvoll zu kombinieren“, berichtet der Neurowissenschaftler Dr. Sadra Sadeh vom BCF.

„Die Netzwerke benutzen das Prinzip der Rückkopplung, um Nervenzellen im Sehsystem zu effizienten Merkmalsdetektoren zu machen. Zudem können in ihnen die Kontaktpunkte zwischen den Zellen – die Synapsen – in Lernprozessen genau abgestimmt werden.“ Die Kombination dieser beiden Eigenschaften sei in Computermodellen schwer zu kontrollieren, da sie leicht zu einer Aktivitätsexplosion im Netzwerk führen könne – ähnlich wie bei einem epileptischen Anfall. Um die Aktivität im Netzwerk stabil zu halten, bezogen die Forscherinnen und Forscher hemmende Synapsen in den Lernprozess ein, die die Erregung im Netzwerk kontrollieren.

Forscher können das Computermodell nun dazu nutzen, unterschiedliche Entwicklungsprozesse im Sehzentrum des Gehirns zu simulieren. Damit können sie beispielsweise nachvollziehen, wie sich Verbindungen zwischen Nervenzellen verändern, wenn diese nach der Geburt erstmals Reize von beiden Augen erhalten. Solche Prozesse spielen bei frühkindlichen Sehstörungen wie etwa dem angeborenen Schielen eine Rolle. „Auf lange Sicht könnte das Modell sogar ermöglichen, bessere Strategien für die Behandlung solcher Erkrankungen zu entwickeln“, sagt Rotter.

Warum aber verändern die neuronalen Netzwerke ihre Struktur durch Seherfahrung, wenn doch Nervenzellen bereits im Moment des Augenöffnens auf bestimmte Reize spezialisiert sind? Eine Antwort auf diese Frage fand das Team in einer parallelen Studie.

„Mit dem direkten Vergleich von unerfahrenen und ausgereiften Nervenzellnetzwerken konnten wir in Simulationen zeigen, dass durch die bevorzugte Verknüpfung von Neuronen mit gleicher Funktion die besonders informationstragenden Komponenten eines Reizes nochmals verstärkt werden“, erläutert Rotter. Somit können Menschen zwar schon beim ersten Augenöffnen alle Reize verarbeiten, doch die Wahrnehmung wird durch das Feintuning der Nervenzellverbindungen deutlich verbessert.

Das Bernstein Center Freiburg ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 180 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:

Prof. Dr. Stefan Rotter
Albert-Ludwigs-Universität Freiburg
Bernstein Center Freiburg
Hansastraße 9A
7904 Freiburg
Tel: +49 (0)761-203 9316
Email: stefan.rotter@biologie.uni-freiburg.de

Originalpublikationen:

S. Sadeh, C. Clopath & S. Rotter (2015): Emergence of functional specificity in balanced networks with synaptic plasticity. PLOS Computational Biology 11(6): e1004307
doi: 10.1371/journal.pcbi.1004307

S. Sadeh, C. Clopath & S. Rotter (2015): Processing of feature selectivity in cortical networks with specific connectivity. PLOS ONE 10(6): e0127547
doi: 10.1371/journal.pone.0127547

Weitere Informationen:

https://www.bcf.uni-freiburg.de/people/details/rotter Webseite Stefan Rotter
https://www.bcf.uni-freiburg.de Bernstein Center Freiburg
http://www.uni-freiburg.de Albert-Ludwigs-Universität Freiburg
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten