Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fehlen des Transkriptionsfaktors FoxO1 löst Lungenhochdruck aus

27.10.2014

Max-Planck-Forscher entdecken neues Therapiekonzept

Bei einer Lungenhochdruckerkrankung teilen sich die Wandzellen der Blutgefäße unkontrolliert. Die Gefäßwände werden dadurch immer dicker. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim und der Universität Gießen haben entdeckt, dass der Transkriptionsfaktor FoxO1 die Teilung der Zellen reguliert und dadurch eine entscheidende Rolle bei der Entstehung des Lungenhochdrucks spielt.


Oben: FoxO1 stoppt ungehemmte Zellteilung in Lungenarterien. Unten: Lichtmikroskopische Aufnahmen von Lungenarterien aus Ratten, die unter Lungenhochdruck leiden. Während das Blutgefäß einer unbehandelten Ratte einen drastisch verkleinerten Durchmesser aufweist (links), normalisiert sich die Gefäßwand nach Aktivierung mit FoxO1 weitestgehend (rechts).

© MPI für Herz- und Lungenforschung

Die Forscher konnten Lungenhochdruck bei Ratten durch eine Aktivierung von FoxO1 heilen. Die Ergebnisse der Studie könnten zur Entwicklung einer neuen Therapie der bislang nicht heilbaren Krankheit genutzt werden.

Schätzungsweise 100 Millionen Menschen leiden weltweit an einer Lungenhochdruckerkrankung. Charakteristisch für die Krankheit sind sich zunehmend verengende Lungenarterien. Der geringere Durchmesser der Gefäße hat eine schlechtere Durchblutung zur Folge.

Die rechte Herzkammer versucht, dies mit einer stärkeren Pumpleistung zu kompensieren. Dadurch erhöht sich der Blutdruck in den Lungenarterien. Die chronische Überlastung des Herzens schädigt dieses im Laufe der Zeit. Die Folge ist eine Herzschwäche, auch als Herzinsuffizienz bezeichnet.

Verschiedene in den letzten Jahren neu entwickelte Therapien zielen vor allem auf eine Linderung der Symptome und eine Entlastung des Herzens ab. Heilbar ist die Lungenhochdruckerkrankung hingegen bisher noch nicht. Dies liegt auch am unzureichenden Wissen über die molekularen Hintergründe, die zur Entstehung des Lungenhochdrucks führen.

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim und der Justus-Liebig-Universität in Gießen gelang nun ein entscheidender Fortschritt. Mit dem Transkriptionsfaktor FoxO1 haben sie ein Schlüsselmolekül identifiziert, das für die Regulation der Zellteilung der Gefäßwandzellen und ihre Lebensdauer eine entscheidende Rolle spielt.

„Die Gefäßwand von Lungenarterien erneuert sich stetig. Ein komplexes Zusammenspiel vieler Faktoren sorgt normalerweise dafür, dass das Verhältnis zwischen sich teilenden und absterbenden Zellen ausbalanciert ist“, sagte Soni Savai Pullamsetti, die das Forschungsprojekt leitete.

Einen wichtigen Hinweis auf die zentrale Rolle von FoxO1 entdeckten die Wissenschaftler in Gewebeproben von Lungenhochdruckpatienten: „Bei diesen Patienten ist FoxO1 nicht ausreichend aktiv, so dass die Aktivität verschiedener Gene nicht richtig gesteuert wird“, so Pullamsetti. Experimente an Zellkulturen und Ratten bestätigten die Ergebnisse: „Wenn wir FoxO1 durch einen genetischen oder pharmakologischen Eingriff abschalten, teilen sich die Gefäßwandzellen häufiger“, so Rajkumar Savai, Erstautor der Studie. In Folge dessen entwickelt sich dann ein Lungenhochdruck.

Eine verringerte FoxO1-Aktivität trägt demnach wesentlich zur Entstehung von Lungenhochdruck bei. In weiteren Experimenten stellte sich heraus, dass bestimmte Wachstumsfaktoren und Botenstoffe für die Verringerung der FoxO1-Aktivität verantwortlich sind. Dabei handelt es sich um Substanzen, die entweder allgemein mit Entzündungsprozessen in Verbindung stehen oder die Zellteilung ankurbeln.

„Eine mögliche neue Therapie könnte darauf abzielen, die Aktivität von FoxO1 in den Lungenarterien der Patienten zu steigern“, so Werner Seeger, Abteilungsdirektor am Max-Planck-Institut in Bad Nauheim und Direktor der Medizinischen Klinik II (Standort Gießen) am Universitätsklinikum Gießen und Marburg. Dieses konnte in experimentellen Studien bereits belegt werden. So normalisierte sich die zuvor krankhafte  Zellteilung der Lungengefäßwand, wenn die Forscher die FoxO1-Aktivität verstärkten. “An Lungenhochdruck leidende Ratten konnten so weitestgehend geheilt werden“, sagte Seeger. Die positiven Befunde stimmen die Wissenschaftler darin optimistisch, auf Basis der Studie einen neuen therapeutischen Ansatz entwickeln zu können.

Ansprechpartner

Prof. Dr. Werner Seeger
 

Dr. Matthias Heil

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon:+49 6032 705-1705Fax:+49 6032 705-1704

Originalpublikation

 
Rajkumar Savai, Hamza M Al-Tamari, Daniel Sedding, Baktybek Kojonazarov, Christian Muecke, Rebecca Teske, Mario R. Capecchi, Norbert Weissmann, Friedrich Grimminger, Werner Seeger, Ralph Theo Schermuly, Soni Savai Pullamsetti
Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension

Prof. Dr. Werner Seeger | Max-Planck-Institute
Weitere Informationen:
http://www.mpg.de/8720492/FoxO1_lungenhochdruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie