Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fantastische Fähigkeit: Der Unterschied zwischen Fiktion und Realität stellt für das menschliche Gehirn kein Problem dar

14.04.2009
Viele Wege führen nach Rom. Wer das im echten Leben noch nicht erfahren hat, kann es in der Fiktion leicht nachholen, braucht dazu beispielsweise nur einmal die Abenteuer der wohl prominentesten Gallier der Comicgeschichte zu lesen.

Ein Asterix-Heft zur Hand nehmen, und die Reise durch das römische Reich - mit Blick über die Schultern der beiden Fantasiehelden - kann losgehen.

Denn Menschen besitzen die Fähigkeit, durch die Aufnahme von Inhalten aus den Medien problemlos in fiktive Welten einzutauchen und - als ob diese Befähigung noch nicht genug wäre - dabei den Bezug zur Realität nicht zu verlieren. (PLoS ONE, 11. März 2009)

Durch Filme, Romane und Computerspiele sind Menschen in der Lage, fließend in fiktive Welten einzutauchen. Wie ein Forscherteam vom Leipziger Max-Planck-Institut für Kognitions- und Neurowissenschaften jetzt herausgefunden hat, sind sie sich dabei ihres "kognitiven Trips" nach Fantasialand stets bewusst und können die Realität ohne Probleme von der Fiktion trennen.

Wie das menschliche Gehirn diesen Spagat zwischen Realität und Fiktion schafft, konnten die Wissenschaftler bereits in einer ersten Studie zu diesem Thema aufdecken: Es war ihnen gelungen zu zeigen, dass für das Lesen von realen und fiktiven Inhalten verschiedene Regionen im menschlichen Gehirn - genau gesagt der anteriore mediale präfrontale und der posteriore cinguläre Cortex - aktiv werden.

Reale Inhalte lösten bei den Untersuchungen Aktivitäten in den Gehirnbereichen aus, die auch gefragt sind, wenn der Gebrauch des autobiographischen Gedächtnisses oder selbstreferenzielle Prozesse anstehen. Fiktive Inhalte wurden dagegen in anderen Hirnregionen verarbeitet. Diese Entdeckung begründete die Vermutung der Forscher, dass für die kognitive Verarbeitung realer Inhalte folglich persönlich relevante Erfahrungen und Kenntnisse der jeweiligen Versuchspersonen eine Rolle spielten, da diese schließlich in denselben Gehirnregionen verarbeitet wurden.

Von dieser Annahme ausgehend, wollten die Max-Planck-Wissenschaftler mit einer Folgestudie herausfinden, ob die persönliche Relevanz realer Personen oder fiktiver Charaktere für Menschen tatsächlich eine Rolle spielt.

Dafür stellten sie zunächst drei verschiedene Gruppen mit Versuchsteilnehmern zusammen, wodurch sie automatisch gewährleisten konnten, dass die persönliche Relevanz der realen und fiktiven Figuren für die Probanden verschieden war. Anschließend mussten alle Teilnehmer Sätze lesen, die entweder von fiktiven Figuren wie Cinderella oder aber realen Personen erzählten, wobei die realen Personen wiederum bekannte, wie beispielsweise der amerikanische Präsident, waren oder aber Freunde und Familienmitglieder der Probanden. Wie Anna Abraham, leitende Wissenschaftlerin der Studie, erklärt, "hat sich dabei gezeigt, dass Familienmitglieder oder Freunde, zu denen eine persönliche Bindung besteht, eine hohe Relevanz bei den Versuchsteilnehmern genossen haben. Reale, bekannte Personen dagegen mussten schon deutlich an Wichtigkeit einbüßen - von den fiktiven Charakteren ganz zu schweigen."

Wie von den Forschern erwartet, verringerte sich das Aktivierungspotenzial in den verarbeitenden Hirnregionen, je unpersönlicher die Personen in den Szenarien für die Versuchsteilnehmer wurden."Diese Entdeckung, dass sich die Aktivitäten der Gehirnregionen spontan an dem Verhältnis von Stimulus und persönlicher Relevanz der Figuren für die Versuchsteilnehmer ausrichten, ist folgerichtig und nährt die Vermutung, dass eben diese persönliche Relevanz für die Unterscheidung von Realität und Fantasie eine Schlüsselrolle spielt", betont Anna Abraham. "So liegt es nahe, dass die Tiefe des persönlichen Bezugs zu realen oder fiktiven Figuren Einfluss nimmt auf Wahrnehmungs- und Speicherungsprozesse. Dadurch ist das Gehirn wiederum in der Lage zu unterscheiden, was real und was fiktiv ist."

Originalveröffentlichung:

Abraham A, von Cramon DY
Reality = Relevance? Insights from Spontaneous Modulations of the Brain's Default Network when Telling Apart Reality from Fiction

PLoS ONE 11. März 2009, doi:10.1371/journal.pone.0004741

Weitere Informationen erhalten Sie von:

Dr. Anna Abraham
Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
Tel.: +49 341 9940-132
E-Mail: abraham@cbs.mpg.de

Barbara Abrell | idw
Weitere Informationen:
http://www.mpg.de/
http://www.cbs.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie