Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum die Evolution manchmal nur langsam vorankommt

08.08.2008
Ein theoretisches Modell erklärt die gebremste Entwicklung von Mikrolebewesen

In den Sedimenten der Tiefsee gibt es ein besonderes Archiv der Evolution: Dort sind die Überreste von einst frei im Wasser schwebenden Kleinstlebewesen, dem sogenannten Mikroplankton, zu finden. Über viele Millionen vergangene Jahre haben sich die Mikrofossilien in gut datierbaren Schichten übereinander abgelagert. Vielfach handelte es sich bei dem Mikroplankton um Foraminiferen, das sind Einzeller, die kleine formenreiche Gehäuse bilden und von denen es bis heute zahlreiche Arten gibt.

Wissenschaftler hatten bereits vor einiger Zeit anhand der Untersuchung der Gehäuse der Mikroplankton-Fossilien festgestellt, dass die Evolutionsgeschwindigkeit der Formen stark schwankte. Vor allem eine merkwürdig verringerte Evolutionsrate der Meeresorganismen, die sich mit den heute angenommenen Evolutionsmechanismen nicht recht in Einklang bringen ließ, zog die Aufmerksamkeit der Forscher auf sich. Es wurden mehrere Entwicklungsreihen von Arten gefunden, die sich auffallend langsam, anscheinend ungeachtet derzeitiger Klimaschwankungen, immer wieder in derselben Richtung veränderten. Einerseits liefern solche Entwicklungsreihen einen der besten und direktesten Beweise für die Evolution der Arten, auf der andere Seite gab es bisher für das langsame Tempo der Evolution keine Erklärung. Nun hat der Mikropaläontologe Prof. Michal Kucera vom Institut für Geowissenschaften der Universität Tübingen in Zusammenarbeit mit Samuel Alizon von der Queen's University im kanadischen Kingston und Vincent A. A. Jansen von der Royal Holloway University of London ein theoretisches Modell erstellt, mit dem sich die langsame Evolution der marinen Kleinstlebewesen plausibel erklären lässt. Die Forschungsergebnisse wurden von der US-amerikanischen Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences) diese Woche vorab online veröffentlicht (http://www.pnas.org/cgi/doi/10.1073/pnas.0805039105).

Einen wichtigen Ausgangspunkt der theoretischen Überlegungen von Michal Kucera und seinen Kollegen bildeten neue molekulargenetische Daten. Daraus ergab sich, dass viele der Arten, die das Mikroplankton der Meere bilden, teilweise mit recht unterschiedlichen Genen ausgestattet sind - obwohl sie äußerlich gleich aussehen. Die Wissenschaftler sprechen von versteckter Diversität. Wahrscheinlich sind die Muster der Evolution, die sich aus den Mikrofossilien nachzeichnen lassen, also nicht das Ergebnis von einzeln abgrenzbaren Arten, sondern das Ergebnis einer Entwicklung ganzer Gruppen von heimlichen Geschwisterarten. In ihrer Form können sie heute als Fossilien nicht unterschieden werden, waren aber genetisch und in ihrer Lebensweise durchaus verschieden. Die Wissenschaftler interessierte, wie sich die versteckte Diversität auf die augenscheinliche Evolutionsrate ausgewirkt hat.

Die Wissenschaftler legten in ihren Überlegungen der Beschreibung der Beziehungen zwischen den Arten ein allgemeines Modell (Lotka-Volterra-Beziehungsmodell) zugrunde. Sie gingen überdies davon aus, dass in den Beziehungen der verschiedenen Foraminiferenarten untereinander der Wettbewerb um Ressourcen - vor allem um Nahrung - dominierte. Um die Grundzüge des Ressourcenwettbewerbs unter äußerlich gleichen Geschwisterarten beispielhaft zu erfassen, stellten sich die Wissenschaftler einige Foraminiferenarten vor, die nebeneinander existieren und die um unterschiedlich große Nahrungspartikel mit verschiedenem Energiegehalt konkurrieren. Die Arten können ein unterschiedlich breites Spektrum an Partikelgrößen verdauen, und die Forscher machten die Annahme, dass die Fähigkeit zur Verdauung verschiedener Partikelgrößen sich durch Evolution ändern kann. Nun soll die maximale Nahrungspartikelgröße ständig etwas zunehmen. Wäre in dem System nur eine Foraminiferenart vorhanden, würde die Evolution schnell vorangehen - die Organismen passen sich den veränderten Bedingungen an. Geht man jedoch von mehreren versteckt diversen Arten aus, verändert sich nur die im Wettkampf stärkste Art schnell, die anderen entwickeln sich langsam.

Die Simulation der Wissenschaftler zeigt, dass die im Wettbewerb schwächeren Populationen sich erst dann anpassen können, wenn die dominante Art in ihrer Entwicklung ein neues Optimum erreicht hat. Die Evolution eines Systems mit versteckter Diversität wird dadurch insgesamt langsamer. Die Wissenschaftler haben sogar festgestellt, dass die augenscheinliche Evolutionsrate exponentiell abnimmt mit einer steigenden Zahl von Geschwisterarten innerhalb einer angenommenen Abstammungslinie. Mit diesem Mechanismus können die Wissenschaftler sowohl die bemerkenswerten Schwankungen in der augenscheinlichen Evolutionsrate des Meeresplanktons erklären als auch die Beobachtung langfristiger Evolutionstrends, die sich nur allmählich durchsetzen.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.pnas.org/cgi/doi/10.1073/pnas.0805039105

Weitere Berichte zu: Foraminiferenart Mikroplankton

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie