Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Evolution von Arbeitsteilung

24.01.2012
Arbeitsteilung ist nicht nur ein Merkmal menschlicher Gesellschaften, sie ist auch zwischen den Bausteinen biologischer Organismen allgegenwärtig und gilt als eines der wichtigsten Resultate der Evolution.

Die Grundbedingungen, unter denen Arbeitsteilung entsteht, haben die Biomathematiker Claus Rueffler und Joachim Hermisson von der Universität Wien gemeinsam mit Günter P. Wagner von der Yale University in einer neuen Arbeit entschlüsselt. Ihre Ergebnisse publizieren sie aktuell in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS).

Tiere und Pflanzen bestehen in der Regel aus vielen gleichartigen Bausteinen oder Modulen. Am offensichtlichsten ist das beim Aufbau höherer Organismen aus verschiedenartigen Zellen. Diese modulare Struktur zeigt sich aber auch auf anderen Ebenen biologischer Organisation: Verschiedene Pflanzenorgane lassen sich auf Blätter zurückführen, Insekten bestehen aus Segmenten und Wirbeltiere haben mehrere Gliedmaßen. Auch unsere Zähne sind ein Beispiel für den modularen Strukturaufbau.

Evolution kann zur Spezialisierung führen

Dabei fällt auf, dass die verschiedenen Module oft nicht identisch sind, sondern sich in Form und Funktion unterscheiden: Schneidezähne und Backenzähne haben verschiedene Aufgaben. Einzelne Bausteine sind also Spezialisten, die in Arbeitsteilung im Organismus zusammenarbeiten. Diese Möglichkeit zur Arbeitsteilung wird oft als Hauptvorteil eines modularen Aufbaus genannt und ist ein weitverbreiteter evolutionärer Trend. Auf der anderen Seite gibt es aber auch viele Beispiele dafür, dass ein Organismus mehrere identische Module umfasst, die gemeinsam mehr als eine einzelne Aufgabe erfüllen. So bestehen einige Grünalgen aus mehreren Dutzend undifferenzierten Zellen. Jede Zelle trägt sowohl zur Ernährung, Fortbewegung und Fortpflanzung der Kolonie bei. Genauso sind Tausendfüßler und viele einfache Krebse aus zahlreichen identischen Segmenten aufgebaut.

Mathematisches Modell errechnet Grundbedingungen der Arbeitsteilung

"Unter welchen Bedingungen kann eine Arbeitsteilung zwischen den Bausteinen eines Organismus im Laufe der Evolution entstehen und wann ist eine solche Differenzierung nicht zu erwarten? An den Antworten auf diese Fragen hängt unser Verständnis, warum komplexe Organismen im Laufe der Evolution überhaupt entstanden sind und nicht alles Leben aus undifferenzierten Zellansammlungen besteht", erklärt Claus Rueffler, Erstautor der Studie und Biomathematiker an der Universität Wien. Rueffler betrachtet dieses Problem mithilfe eines mathematischen Models. Im Gegensatz zu früheren Arbeiten zu diesem Thema ist das Modell nicht auf ein spezifisches biologisches System zugeschnitten, sondern konzentriert sich auf Aspekte, die allen Beispielen von Arbeitsteilung gemeinsam sind, um so Grundbedingungen ableiten zu können.

Spezialisten versus Generalisten

Ausgangspunkt der Überlegungen ist die Beobachtung, dass Module nicht für verschiedene Aufgaben gleichzeitig spezialisiert sein können: Schneidezähne sind dazu geeignet, Nahrungsstücke grob zu zerteilen, aber nicht dazu, Nahrungsstücke in kleinste Teile zu zerlegen. Bei Backenzähnen verhält es sich genau anders herum. "Das Modell beantwortet die Frage, unter welchen Bedingungen ein Organismus, der aus verschiedenen spezialisierten Modulen besteht, einem Organismus überlegen ist, der aus mehreren Modulen besteht, die jeweils Generalisten sind und verschiedene Aufgaben mäßig gut erfüllen können," abstrahiert Rueffler.

Ursachen für die Entwicklung von Arbeitsteilung

Es stellt sich heraus, dass sich unter sehr allgemeinen Annahmen an das Modell erstaunlich restriktive Bedingungen für die Überlegenheit von differenzierten Organismen ableiten lassen. Ein Hauptgrund hierfür ist, dass ein hoher Grad an Spezialisierung in der Regel mit hohen Kosten verbunden ist. Generalisten sind auch dann im Vorteil, wenn bei Beschädigung des Organismus und Verlust eines spezialisierten Moduls der Totalausfall einer Funktion droht. Es braucht deshalb starke andere Faktoren, die die Evolution von Arbeitsteilung fördern. Arbeitsteilung ist zum Beispiel immer dann zu erwarten, wenn Module allein aufgrund ihrer Lage im Organismus besonders dazu geeignet sind, eine bestimmte Aufgabe zu erfüllen. Solche "Positionseffekte" waren zweifellos bei der Differenzierung der Zähne von Bedeutung. Eine weitere mögliche Ursache von Arbeitsteilung sind synergistische Effekte zwischen differenzierten Modulen, wenn die Leistungsfähigkeit des Organismus sich nicht einfach aus der Summe der Beiträge seiner einzelnen Module ergibt.
Die Resultate machen plausibel, warum trotz einer langen evolutionären Geschichte auch heute noch sehr wenig komplexe Organismen neben hochkomplexen Organismen bestehen. Für die weitere Forschung können sie als Ausgangspunkt dienen, evolutionäre Trends zu höherer Komplexität über Stammbäume hinweg zu analysieren.

Kurzbiografie von Claus Rueffler

Claus Rueffler studierte Biologie und Mathematik an der Universität Kiel, promovierte an der Universität Leiden in theoretischer Evolutionsbiologie und arbeitete anschließend für zwei Jahre als wissenschaftlicher Mitarbeiter an der Universität von Toronto. Seit 2008 arbeitet Claus Rueffler im Rahmen eines vom WWTF finanzierten "High Potential Grants" in der "Mathematics and Biosciences Group" am Institut für Mathematik der Universität Wien.
Publikation
Proceedings of the National Academy of Sciences (PNAS): Evolution of functional specialization and division of labor: Claus Rueffler, Joachim Hermisson (beide Universität Wien), Günter P. Wagner (Yale University). Jänner 2012.
DOI: 10.1073/pnas.1110521109

Wissenschaftlicher Kontakt
Dr. Claus Rueffler
Institut für Mathematik
Universität Wien
1090 Wien, Nordbergstraße 15
T +43-1-4277-507 74
F +43-1-4277-9 506
claus.rueffler@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops