Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erweiterung des genetischen Alphabets

11.06.2012
Nachwuchswissenschaftlerin der Universität Konstanz legt Kristallstrukturanalyse eines synthetischen Basenpaars vor

Die Konstanzer Wissenschaftlerin Karin Betz hat in einer internationalen Kooperation mit dem Scripps Research Institute in Kalifornien (USA) als Erstautorin ihre Forschungsergebnisse in der internationalen Fachzeitschrift „Nature Chemical Biology“ veröffentlicht.

Die 27-jährige Nachwuchswissenschaftlerin, die an der Graduiertenschule Chemische Biologie (KoRS-CB) der Universität Konstanz promoviert, stellt in ihrer Veröffentlichung mit Denis A. Mayshev aus den USA die Kristallstruktur einer DNA-Polymerase beim Einbau eines artifiziellen Basenpaares vor.

In dem Bestreben, das natürliche genetische Alphabet künstlich zu erweitern, wurden in den letzten Jahren von verschiedenen Arbeitsgruppen artifizielle Basenpaare mit unterschiedlicher Struktur und Paarungseigenschaften synthetisiert und auf ihren Einbau durch DNA-Polymerasen getestet. Ein vielversprechendes künstliches Basenpaar, das von Polymerasen erfolgreich in einen DNA-Strang eingebaut werden kann, wurde von einer Forschergruppe um Floyd E. Romesberg, PhD, am Scripps Research Institute in Kalifornien gefunden.

Dieses hydrophobe Basenpaar paart nicht wie ein natürliches Basenpaar über Wasserstoffbrücken, sondern hauptsächlich durch hydrophobe- und Stapelwechselwirkungen. In freier DNA zeigt das Basenpaar eine interkalierende, also übereinander liegende Struktur, von der ausgehend dessen Einbau in eine DNA-Polymerase schwer vorstellbar ist. In der nun veröffentlichten Strukturanalyse belegt die internationale Forschergruppe, dass die DNA-Polymerase selbst die Replikation des synthetischen Basenpaares unterstützt, indem sie das Basenpaar zwingt, genau gleich zu paaren wie das natürliche Basenpaar: in einer Watson-Crick-Geometrie.

Die Wissenschaftler konnten belegen, dass das Paar in freier DNA aufeinander liegt und erst im aktiven Zentrum der Polymerase planar angeordnet wird. Dafür wurde das von der Arbeitsgruppe Romesberg gefundene künstliche Basenpaar an der Universität Konstanz durch Karin Betz analysiert. Um herauszufinden, wie die Polymerase das Basenpaar einbaut, wurde der Protein-DNA-Komplex in Konstanz zunächst kristallisiert und der Kristall anschließend mit Röntgenstrahlen behandelt. Aus den dadurch entstehenden Beugungsbildern konnte die Kristallstruktur berechnet und somit die genaue 3D-Struktur des Proteins abgebildet werden.

Karin Betz ist Stipendiatin der Graduiertenschule Chemische Biologie, die an der Schnittstelle von Chemie und Biologie angesiedelt ist. Sie forscht in der Arbeitsgruppe von Prof. Dr. Andreas Marx an der Professur für Organische Chemie und Zelluläre Chemie in enger Zusammenarbeit mit den Arbeitsgruppen von Prof. Dr. Wolfram Welte und Prof. Dr. Kay Diederichs in den Bereichen Proteinkristallographie und Molekulare Bioinformatik. Betz hat nach einem Studium der „Life Science“ an der Universität Konstanz im Jahr 2010 die Arbeit an ihrer Promotion zur Struktur und Funktion der DNA-Polymerase begonnen.

Als institutionelles Zentrum des Forschungsschwerpunktes „Lebenswissenschaften“ an der Universität Konstanz hat sich die Graduiertenschule Chemische Biologie inzwischen national und international profiliert und ist zu einer gesuchten Adresse für den wissenschaftlichen Nachwuchs geworden. Mit der Gründung des „Center for Chemical Biology“ und der Bewilligung des Sonderforschungsbereichs 969 „Chemical and Biological Principles of Cellular Proteostasis“ im November 2011 werden exzellente Forschung und Promovierendenausbildung noch enger verzahnt.

Originalveröffentlichung:
K. Betz, D. A. Malyshev, T. Lavergne, W. Welte, K. Diederichs, T. J. Dwyer, P. Ordoukhanian, F. E. Romesberg, A. Marx “KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry” Nature Chem. Biol. 2012, Published online 3 June 2012.

Die gesamte Publikation online unter:
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.966.html

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Universität Konstanz
Karin Betz
Graduiertenschule Chemische Biologie
Telefon: 07531 / 88 2289
E-Mail: karin.betz@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.966.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie