Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Ionenfluss "filmisch" festgehalten

01.09.2014

Ionenkanäle sind für eine Vielzahl physiologischer und pathophysiologischer Prozesse im menschlichen Körper lebenswichtig.

Ein junges Forschungsteam unter der Leitung von Anna Stary-Weinzinger, Pharmakologin an der Universität Wien, erforschte den Mechanismus des Ionenflusses durch spannungsgesteuerte Natriumionenkanäle.


Schematische Darstellung des Natriumionenkanals (hellblau). Oben: Einstrom von Natriumionen (gelb gefärbt). Unten: Konformationsänderung von E53 ("Flip-Stellung") während des Ionenausstroms.

Copyright: Song Ke

Da dieser Prozess mit einer unglaublichen Geschwindigkeit abläuft – es fließen bis zu 100 Millionen Ionen pro Sekunde –, wurden Computersimulationen durchgeführt, um den Natriumfluss sozusagen in Zeitlupe zu beobachten. Die Erkenntnisse sind aktuell in der renommierten Fachzeitschrift PLOS Computational Biology erschienen.

Spannungsgesteuerte Ionenkanäle generieren lebensnotwendige elektrische Signale im menschlichen Körper. Ohne diese Proteine könnten zentrale Funktionen wie z.B. unser Herzschlag, die Signalweiterleitung im Gehirn oder Muskelbewegungen nicht stattfinden. Besonders faszinierend ist, dass diese Proteine "wählerisch" sind: Sie lassen selektiv nur bestimmte Ionen durch und ermöglichen dabei trotzdem enorme Durchflussraten.

Mehr über die Funktionsweise der außergewöhnlichen Ionenkanäle verrät der Blick auf ihre Kristallstrukturen: Diese zeigen unter anderem eine kurze, mit Wasser gefüllte "Filterstruktur", die von vier negativ geladenen Aminosäuren umgeben ist. Sie ist für den selektiven Natriumfluss verantwortlich.

Da Kristallstrukturen jedoch "statische" Momentaufnahmen darstellen, ist es sehr schwierig, daraus Rückschlüsse auf jene dynamischen Prozesse zu ziehen, die den Ionenfluss erst ermöglicht. Diese Fragestellungen eignen sich optimal für Computersimulationen.

Simulationen des schnellsten Computers Österreichs "filmen" Ionenbewegungen

Um den faszinierenden Proteinen quasi bei der Arbeit zusehen zu können, hat das Team vom Department für Pharmakologie und Toxikologie der Universität Wien sogenannte Moleküldynamiksimulationen durchgeführt. Die für diese Analyse notwendige Rechenleistung lieferte der Vienna Scientific Cluster (VSC), der schnellste Computer Österreichs. Dabei entdeckten die ForscherInnen der Universität Wien, dass der Ionenfluss vom Extrazellularraum in die Zelle deutlich schneller erfolgt als in die umgekehrte Richtung.

"Den Schlüssel für diese überraschende Entdeckung liefert eine negativ geladene Aminosäure: Glutaminsäure 53, kurz E53", erklärt Pharmakologin Anna Stary-Weinzinger, Leiterin des Forschungsprojekts an der Universität Wien: "E53 kann je nach Ionenflussrichtung ihre Konformation verändern und moduliert dadurch die Ionenflussgeschwindigkeit."

Glutaminsäure E53 reguliert den Ionenfluss

Die Moleküldynamiksimulationen zeigen, dass die Aminosäure E53 zwei unterschiedliche Orientierungen einnehmen kann, je nach Richtung des Ionenflusses. Durch diese "Schaltungsfunktion" ermöglicht E53 einen schnellen Ioneneinstrom in die Zelle, wenn es sich in der sogenannten "nicht geflippten Auswärtsstellung" befindet. In der "Flip-Stellung" hingegen beschleunigt E53 das Ausströmen der Ionen:

"Mit Hilfe 'Freier Energie Berechnungen' konnten wir zeigen, dass der Weg aus der Zelle für die Ionen schwieriger ist als jener in die Zelle, weil es im Protein eine sogenannte 'Energiebarriere' für den auswärts gerichteten Natriumfluss gibt", erklärt Song Ke, Dissertant in der Gruppe von Anna Stary-Weinzinger an der Universität Wien, genauer: "In der 'Flip'-Stellung hilft E53 den Ionen dabei, diese Hürde zu überwinden."

Die ForscherInnen halten es für wahrscheinlich, dass diese Bewegungen auch eine wichtige Rolle bei der sogenannten "Inaktivierung" spielen – jenem Mechanismus, der den Ionenfluss kontrolliert stoppt, um die Signalweiterleitung zu unterbrechen.

Gefördert wurde diese Arbeit vom FWF-Doktoratskolleg "Molecular Drug Targets" (MolTag), das von Steffen Hering, Vorstand des Departments für Pharmakologie und Toxikologie der Fakultät für Lebenswissenschaften der Universität Wien, geleitet wird.

Publikation in PLOS Computational Biology:
Different Inward and Outward Conduction Mechanisms in NaVMs Suggested by Molecular Dynamics Simulations: Song Ke, E. N. Timin, Anna Stary-Weinzinger. PLOS Computational Biology, July 2014.
DOI: 10.1371/journal.pcbi.1003746

Wissenschaftlicher Kontakt
Mag. Dr. Anna Stary-Weinzinger
Department für Pharmakologie und Toxikologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-553 11
anna.stary@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Weitere Informationen:

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003746 Publikation in PLOS Computational Biology
http://medienportal.univie.ac.at/presse/ Medienportal der Universität Wien

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften