Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Ionenfluss "filmisch" festgehalten

01.09.2014

Ionenkanäle sind für eine Vielzahl physiologischer und pathophysiologischer Prozesse im menschlichen Körper lebenswichtig.

Ein junges Forschungsteam unter der Leitung von Anna Stary-Weinzinger, Pharmakologin an der Universität Wien, erforschte den Mechanismus des Ionenflusses durch spannungsgesteuerte Natriumionenkanäle.


Schematische Darstellung des Natriumionenkanals (hellblau). Oben: Einstrom von Natriumionen (gelb gefärbt). Unten: Konformationsänderung von E53 ("Flip-Stellung") während des Ionenausstroms.

Copyright: Song Ke

Da dieser Prozess mit einer unglaublichen Geschwindigkeit abläuft – es fließen bis zu 100 Millionen Ionen pro Sekunde –, wurden Computersimulationen durchgeführt, um den Natriumfluss sozusagen in Zeitlupe zu beobachten. Die Erkenntnisse sind aktuell in der renommierten Fachzeitschrift PLOS Computational Biology erschienen.

Spannungsgesteuerte Ionenkanäle generieren lebensnotwendige elektrische Signale im menschlichen Körper. Ohne diese Proteine könnten zentrale Funktionen wie z.B. unser Herzschlag, die Signalweiterleitung im Gehirn oder Muskelbewegungen nicht stattfinden. Besonders faszinierend ist, dass diese Proteine "wählerisch" sind: Sie lassen selektiv nur bestimmte Ionen durch und ermöglichen dabei trotzdem enorme Durchflussraten.

Mehr über die Funktionsweise der außergewöhnlichen Ionenkanäle verrät der Blick auf ihre Kristallstrukturen: Diese zeigen unter anderem eine kurze, mit Wasser gefüllte "Filterstruktur", die von vier negativ geladenen Aminosäuren umgeben ist. Sie ist für den selektiven Natriumfluss verantwortlich.

Da Kristallstrukturen jedoch "statische" Momentaufnahmen darstellen, ist es sehr schwierig, daraus Rückschlüsse auf jene dynamischen Prozesse zu ziehen, die den Ionenfluss erst ermöglicht. Diese Fragestellungen eignen sich optimal für Computersimulationen.

Simulationen des schnellsten Computers Österreichs "filmen" Ionenbewegungen

Um den faszinierenden Proteinen quasi bei der Arbeit zusehen zu können, hat das Team vom Department für Pharmakologie und Toxikologie der Universität Wien sogenannte Moleküldynamiksimulationen durchgeführt. Die für diese Analyse notwendige Rechenleistung lieferte der Vienna Scientific Cluster (VSC), der schnellste Computer Österreichs. Dabei entdeckten die ForscherInnen der Universität Wien, dass der Ionenfluss vom Extrazellularraum in die Zelle deutlich schneller erfolgt als in die umgekehrte Richtung.

"Den Schlüssel für diese überraschende Entdeckung liefert eine negativ geladene Aminosäure: Glutaminsäure 53, kurz E53", erklärt Pharmakologin Anna Stary-Weinzinger, Leiterin des Forschungsprojekts an der Universität Wien: "E53 kann je nach Ionenflussrichtung ihre Konformation verändern und moduliert dadurch die Ionenflussgeschwindigkeit."

Glutaminsäure E53 reguliert den Ionenfluss

Die Moleküldynamiksimulationen zeigen, dass die Aminosäure E53 zwei unterschiedliche Orientierungen einnehmen kann, je nach Richtung des Ionenflusses. Durch diese "Schaltungsfunktion" ermöglicht E53 einen schnellen Ioneneinstrom in die Zelle, wenn es sich in der sogenannten "nicht geflippten Auswärtsstellung" befindet. In der "Flip-Stellung" hingegen beschleunigt E53 das Ausströmen der Ionen:

"Mit Hilfe 'Freier Energie Berechnungen' konnten wir zeigen, dass der Weg aus der Zelle für die Ionen schwieriger ist als jener in die Zelle, weil es im Protein eine sogenannte 'Energiebarriere' für den auswärts gerichteten Natriumfluss gibt", erklärt Song Ke, Dissertant in der Gruppe von Anna Stary-Weinzinger an der Universität Wien, genauer: "In der 'Flip'-Stellung hilft E53 den Ionen dabei, diese Hürde zu überwinden."

Die ForscherInnen halten es für wahrscheinlich, dass diese Bewegungen auch eine wichtige Rolle bei der sogenannten "Inaktivierung" spielen – jenem Mechanismus, der den Ionenfluss kontrolliert stoppt, um die Signalweiterleitung zu unterbrechen.

Gefördert wurde diese Arbeit vom FWF-Doktoratskolleg "Molecular Drug Targets" (MolTag), das von Steffen Hering, Vorstand des Departments für Pharmakologie und Toxikologie der Fakultät für Lebenswissenschaften der Universität Wien, geleitet wird.

Publikation in PLOS Computational Biology:
Different Inward and Outward Conduction Mechanisms in NaVMs Suggested by Molecular Dynamics Simulations: Song Ke, E. N. Timin, Anna Stary-Weinzinger. PLOS Computational Biology, July 2014.
DOI: 10.1371/journal.pcbi.1003746

Wissenschaftlicher Kontakt
Mag. Dr. Anna Stary-Weinzinger
Department für Pharmakologie und Toxikologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-553 11
anna.stary@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Weitere Informationen:

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003746 Publikation in PLOS Computational Biology
http://medienportal.univie.ac.at/presse/ Medienportal der Universität Wien

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics