Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste detaillierte Daten über ein im gasförmigen Zustand stabiles Protein

20.01.2011
Forscher um die Innsbrucker START-Preisträgerin Kathrin Breuker haben ein Protein entdeckt, das auch im gasförmigen Zustand über lange Zeit stabil gefaltet bleibt.

Durch vergleichende Studien des gelösten und gasförmigen Proteins konnten die Forscher zeigen, dass eine Kombination von elektrostatischen Wechselwirkungen für diese erstaunliche Stabilität verantwortlich ist. Die neuen Erkenntnisse werden helfen, Eiweißstrukturen besser zu verstehen. Die Wissenschaftler berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Angewandte Chemie International Edition.

Proteine sind die Bausteine des Lebens und übernehmen vielfältige Aufgaben im Organismus. Die meist sehr komplexen räumlichen Strukturen dieser Makromoleküle haben entscheidenden Einfluss auf ihre biologischen Funktion. Diese Strukturen im Detail zu verstehen, erweist sich jedoch als schwierig. Mit bisherigen Methoden kann die Struktur von Proteinen nur in kondensierter Form, etwa in Kristallen, untersucht werden. Ein von Dr. Kathrin Breuker vom Institut für Organische Chemie der Universität Innsbruck angewendetes Verfahren, die Fourier-Transform-Ionen-Zyklotron-Resonanz-Massenspektrometrie, erlaubt nun auch die Untersuchung gasförmiger, von Lösungsmitteln freier Proteine. Die gelösten Biomoleküle werden dazu vom Lösungsmittel getrennt und ionisiert und dann in einer Vakuumkammer vermessen.

„Mit dieser Methode sehen wir die Eiweiße quasi im ‚nackten’ Zustand durch unser Messinstrument fliegen“, verdeutlicht die Forscherin. Gemeinsam mit ihrem Institutskollegen Priv.-Doz. Martin Tollinger hat Breuker nun ein ganz spezielles Protein ins Visier genommen. Tollinger hatte mittels Kernspinresonanzspektroskopie schon länger die Struktur und Stabilität des Proteins KIX in gelöster Form untersucht. KIX besteht aus drei gebündelten Helixspiralen und weist besondere Stabilitätseigenschaften auf, wie Breuker und Tollinger nun zeigen konnten. „Während Proteine in der Gasphase normalerweise innerhalb von Millisekunden ihre natürliche Faltung verlieren, fliegt KIX mindestens vier Sekunden lang stabil gefaltet durch die Vakuumkammer“, erzählen die Forscher von ihrer überraschenden Beobachtung.

Proteinstrukturen besser verstehen
Durch einander ergänzende Analysen konnten Breuker und Tollinger detaillierte Daten zu dem Protein gewinnen. Grund für die besondere Stabilität von KIX sind demnach elektrostatische Wechselwirkungen. Die Forscher schreiben die Stabilität vier unterschiedlichen Typen von Wechselwirkungen zu, wobei die sogenannten Salzbrücken –Ionenbindungen zwischen positiv und negativ geladenen Seitenketten der Proteine – am meisten zur Stabilität beitragen. Vergleichende Studien zeigen aber, dass erst die Kombination mehrerer Wechselwirkungstypen diese hohe Stabilität garantiert. „Damit steht uns erstmals ein Modellsystem für die Analyse von Proteinstrukturen in der Gasphase zur Verfügung, mit dem auch andere bzw. neue Methoden getestet werden können“, erklärt Kathrin Breuker. „Diese Untersuchungen helfen uns, Proteinstrukturen besser zu verstehen.“ Dabei geht es vor allem um die Frage, welche Wechselwirkungen die Struktur von Proteinen stabilisieren. Das Protein KIX eignet sich besonders gut für diese Untersuchungen, weil nicht nur die Struktur als Ganzes sondern auch einzelne Details im gasförmigen Zustand erhalten bleiben. „Unser Ziel ist es, weitere strukturelle Eigenschaften zu bestimmen, die uns Aufschluss über das Verhalten der Proteine in unterschiedlichen chemischen Umgebungen geben können“, sagen die beiden Wissenschaftler.

Kathrin Breuker ist Mitglied des Forschungszentrums für Molekulare Biowissenschaften (CMBI) der Universität Innsbruck und wurde 2007 mit dem START-Preis ausgezeichnet. Martin Tollinger leitet eine eigene Arbeitsgruppe am Institut für Organische Chemie der Universität Innsbruck. Die Forschungsarbeiten wurden vom österreichischen Wissenschaftsfonds FWF unterstützt (Y372, P19428). Die Ergebnisse wurden in der aktuellen Ausgabe der Fachzeitschrift Angewandte Chemie International Edition veröffentlicht.

Rückfragehinweis:
Dr. Kathrin Breuker
Institut für Organische Chemie
Universität Innsbruck
Tel.: +43 512 507-2892
E-Mail: kathrin.breuker@uibk.ac.at
http://www.bioms-breuker.at/
Weitere Informationen:
http://dx.doi.org/10.1002/anie.201005112 - Electrostatic Stabilization of a Native Protein Structure in the Gas Phase. Kathrin Breuker, Sven Brüschweiler und Martin Tollinger. Angewandte Chemie International Edition 2011. DOI: 10.1002/anie.201005112

Dr. Christian Flatz | idw
Weitere Informationen:
http://www.bioms-breuker.at/
http://dx.doi.org/10.1002/anie.201005112

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise