Erbgut-Schnipsel gegen Brustkrebs – Neuer Ansatz deckt komplexes Wechselspiel auf

Das Team um Privatdozent Dr. Stefan Wiemann und Dr. Özgür Sahin am Deutschen Krebsforschungszentrum in Heidelberg entdeckte drei miRNAs, die hemmend in den Signalweg eingreifen und so das Wachstum der Tumorzellen bremsen. Der eigens entwickelte Ansatz kombiniert Hochdurchsatzverfahren mit computerbasierten Analysen und ermöglicht Untersuchungen auf Netzwerkebene, statt nur einzelne Komponenten isoliert voneinander zu betrachten.

Tumorzellen vermehren sich unkontrolliert, weil bei ihnen jene komplizierten Regelkreise gestört sind, die normalerweise das Zellwachstum in Schach halten. Verschiedene Signalwege sind bekannt, die bei Brustkrebs entgleisen können, darunter der Signalweg des Rezeptormoleküls EGFR (Epidermaler Wachstumsfaktor-Rezeptor). Eine Daueraktivierung dieses Rezeptors führt häufig zu ungehemmter Zellteilung.

Die durch Aktivierung des Rezeptors angestoßene Reaktionskette kann auf verschiedene Art und Weise beeinflusst werden. So ist bekannt, dass kleine Erbgut-Schnipsel inhibierend auch in diesen Signalweg eingreifen und damit eine Anti-Tumor-Wirkung haben können. Solche so genannte miRNAs, von denen über 800 im Erbgut kodiert sind, hemmen dabei die Herstellung bestimmter Komponenten des Signalwegs, indem sie verhindern, dass die entsprechende Erbinformation in Protein übersetzt wird. Erstmals untersuchten Wissenschaftler um Dr. Özgür Sahin und Privatdozent Dr. Stefan Wiemann am Deutschen Krebsforschungszentrum in Heidelberg nun wie miRNAs in ihrer Gesamtheit den EGFR-Signalweg koordinieren.

Dabei identifizierten sie drei bisher nicht mit diesem Signalweg in Verbindung gebrachte miRNAs (miR-124, miR-147 und miR-193a-3p) als Tumorsuppressoren, die den EGFR-Signalweg hemmen und damit die Teilung der Tumorzellen abbremsen. Eine entscheidende Erkenntnis aus ihren Untersuchungen war zudem, dass einzelne miRNAs mehrere am Signalweg beteiligte Proteine zum Ziel haben, diese also ko-regulieren können. Zugleich werden einzelne Proteine zum Teil durch mehrere miRNAs beeinflusst. Stefan Wiemann erklärt: „Das Wissen um die genauen Eigenschaften ist deshalb hochrelevant, weil einzelne miRNAs recht milde Effekte verursachen können, also eher eine Feinregulierung der sensibel abgestimmten Signalwege bewirken. In ihrem Zusammenspiel entfalten die miRNAs jedoch starke Effekte, was sie zu möglichen Angriffspunkten neuartiger Krebstherapien macht.“

Die Besonderheit an den Untersuchungen der Heidelberger Wissenschaftler ist, dass sie die Gesamtheit der bisher bekannten miRNAs untersuchten, anstatt sich auf einzelne Moleküle zu beschränken. Sie brachten dazu in einem Zellkulturansatz zunächst alle miRNAs einzeln in eine Brustkrebszelllinie ein. Dann untersuchten sie in einem Hochdurchsatzverfahren, wie sich die Anwesenheit der jeweiligen miRNAs in der Zelle auf 26 Proteine des EGFR-Signalwegs auswirkte. Mit einer selbst entwickelten neuartigen Methode zur Netzwerkanalyse verglichen sie zudem die Nukleotid-Sequenzen der miRNAs mit den Gensequenzen der Proteine und konnten so in einem computergestützten Modell zeigen, welche miRNAs welche Proteine regulieren bzw. ko-regulieren. Erst die Kombination der Laboruntersuchungen mit den rechnerbasierten Analysen ergab ein vollständiges Bild der tatsächlichen biologischen Abläufe. Bevor miRNAs eventuell selbst als Medikamente bzw. als Angriffspunkte für neue Therapien eingesetzt werden können, ist es unabdingbar, die komplexen Zusammenhänge auf Netzwerkebene zu verstehen. Hierfür wurde mit dem neuartigen Ansatz ein wichtiger Grundstein gelegt.

Originaltitel der Publikation:
Global microRNA level regulation of EGFR-driven cell cycle protein network in breast cancer. Uhlmann et al. Molecular Systems Biology, February 14th 2012. Link zum Artikel: http://www.nature.com/msb/journal/v8/n1/full/msb2011100.html
Nationales Genomforschungsnetz (NGFN)
Das Bundesministerium für Bildung und Forschung (BMBF) fördert die Untersuchung von Krebserkrankungen seit 2001 im Nationalen Genomforschungsnetz (NGFN). Die Förderung wird seit 2008 im Bereich NGFN-Plus in dem Programm der Medizinischen Genomforschung fortgeführt. Die hier vorgestellten Arbeiten wurden unter Federführung des Integrierten Verbundes „Zelluläre Systemgenomik“ im Rahmen von NGFN-Plus angefertigt.

http://www.ngfn.de

Für weitere Fragen steht zur Verfügung:
Privatdozent Dr. Stefan Wiemann
Deutsches Krebsforschungszentrum – DKFZ
Abteilung Molekulare Genomanalyse B050
Im Neuenheimer Feld 580, 69120 Heidelberg
Tel.: 06221 42- 4702
E-Mail: s.wiemann@dkfz.de
Pressekontakt NGFN:
Dr. Silke Argo
NGFN Geschäftsstelle
c/o Deutsches Krebsforschungszentrum, V025
Im Neuenheimer Feld 580, 69120 Heidelberg
Tel.: 06221 42-4743
Fax: 06221 42-4651
E-Mail: s.argo@dkfz.de

Media Contact

Dr. Silke Argo idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer