Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ende eines Dogmas: Bipolarzellen in der Netzhaut feuern Aktionspotenziale

13.12.2012
Die Netzhaut muss Bilder „digitalisieren“, um sie verlässlich über den Sehnerv ins Gehirn weiterzuleiten.

Bisher nahm man an, dass dieser Schritt in den Ganglienzellen erfolgt, den Ausgabezellen der Netzhaut. Forscher um Thomas Euler an der Universität Tübingen, dem Werner Reichardt Centre for Integrative Neuroscience und dem Bernstein Zentrum Tübingen konnten jetzt nachweisen, dass bereits Bipolarzellen digitale Signale verschicken können.


Einige Bipolarzellen in der Netzhaut von Mäusen erzeugen Aktionspotenziale (eingefärbt in rot), während andere Typen ausschließlich abgestufte Signale zur Informationsweiterleitung verwenden (eingefärbt in grün).
Bild: Tom Baden, 2012

Sie fanden in mindestens drei Typen von Bipolarzellen in der Mäusenetzhaut deutliche Hinweise auf schnelle und stereotype Aktionspotenziale. Diese Ergebnisse weisen darauf hin, dass die Netzhaut noch keineswegs so gut verstanden ist wie bisher gedacht.

Die Netzhaut (Retina) in unseren Augen ist nicht nur eine Schicht von Lichtsinneszellen, die ähnlich einem Kamerachip Lichtmuster 1:1 ins Gehirn weiterschickt. Sie führt bereits hochkomplexe Verarbeitungsschritte durch, bei denen verschiedene Eigenschaften der Lichtreize herausfiltert werden: ob sich die Lichtintensität an einer Stelle gerade erhöht oder verringert hat, in welche Richtung sich ein Lichtpunkt bewegt oder auch wo eine Kante im Bild verläuft. Um diese Information verlässlich über den Sehnerv – eine Art Kabel – ins Gehirn zu übertragen, muss sie in eine Folge von stereotypen Aktionspotenzialen umgewandelt, also „digitalisiert“ werden.

Nach der klassischen Lehrmeinung verwenden erst die Ganglienzellen, die die Information von der Netzhaut zum Gehirn weiterleiten, einen digitalen Code, ähnlich dem im Computer. Fast alle anderen Zellen, so nahm man an, arbeiten mit abgestuften, also analogen Signalen. Doch Tübinger Forscher konnten nun zeigen, dass bei Säugetieren bereits die Bipolarzellen, welche im retinalen Netzwerk direkt auf die Photorezeptoren folgen, in einem digitalen Modus arbeiten können.

Mit einer neuen experimentellen Technik gelang es dem Wissenschaftler Tom Baden und seinen Kollegen, Signale in den synaptischen Terminalen der Bipolarzellen in der Mäuseretina zu messen. Die Wissenschaftler konnten die Zellen basierend auf ihren Antworten auf einfache Lichtreize acht verschiedenen Typen zuordnen. Diese Typen entsprachen im Wesentlichen jenen, die man auf Grund physiologischer und anatomischer Studien erwartet hatte. Überraschenderweise sahen die Antwortsignale in den schnellsten Zelltypen aber anders aus als erwartet: Sie waren schnell, stereotyp, und tauchten entweder in voller Höhe oder gar nicht auf, waren also nicht abgestuft. All dies sind typische Eigenschaften von Aktionspotenzialen. Früher hatte man solche „digitalen“ Signale zwar bereits vereinzelt in Bipolarzellen beobachtet, aber für Sonderfälle gehalten. Studien aus den letzten beiden Jahren hatten die klassische Überzeugung, dass Bipolarzellen keine Aktionspotenziale erzeugen, bereits durch die Untersuchung von Bipolarzellen in Fischen ins Wanken gebracht. Die neuen Daten aus Tübingen zeigen jetzt, dass digitale Signale systematisch in bestimmten Bipolarzellen von Säugetieren generiert werden. Aktionspotenziale ermöglichen eine schnellere und zeitlich präzisere Signalübertragung als abgestufte Signale und bieten damit in bestimmten Situationen Vorteile. Damit bringen die Ergebnisse aus Tübingen ein sicher geglaubtes Dogma in der Hirnforschung endgültig zu Fall – und eröffnen eine Vielzahl neuer Fragen.

Das Bernstein Zentrum Tübingen ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 150 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Text:
Simone Cardoso de Oliveira, Philipp Behrens
Weitere Informationen erteilen Ihnen gerne:
Dr. Tom Baden
Universität Tübingen
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) / Forschungsinstitut für Augenheilkunde
Otfried-Mueller-Strasse 25
72076 Tuebingen
Tel.: +49 (0)7071 29 84749
thomas.baden@uni-tuebingen.de
Prof. Thomas Euler
Universität Tübingen
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) / Forschungsinstitut für Augenheilkunde
Otfried-Mueller-Strasse 25
72076 Tuebingen
Tel.: +49 (0)7071 29 85028
thomas.euler@cin.uni-tuebingen.de
Originalpublikation:
Baden T., Berens P., Bethge M., Euler T. (2012): „Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina“. Current Biology: Dec 13, 2012.

http://dx.doi.org/10.1016/j.cub.2012.11.006

Weitere Informationen:

http://www.eulerlab.de
Webseite des Euler Labors
http://www.bccn-tuebingen.de
Bernstein Zentrum Tübingen
http://www.cin.uni-tuebingen.de
Werner Reichardt Centre for Integrative Neuroscience
http://www.uni-tuebingen.de
Universität Tübingen
http://www.nncn.de
Nationales Bernstein Netzwerk Computational Neuroscience

Dr. Simone Cardoso de Oliveira | idw
Weitere Informationen:
http://www.nncn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der „heilige Gral“ der Peptidchemie: Neue Strategie macht Peptid-Wirkstoffe oral verfügbar
21.02.2018 | Technische Universität München

nachricht Bakterien produzieren mehr Substanzen als gedacht
21.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Verteidigungslinie gegen Grippe weiter entschlüsselt

21.02.2018 | Medizin Gesundheit

Der „heilige Gral“ der Peptidchemie: Neue Strategie macht Peptid-Wirkstoffe oral verfügbar

21.02.2018 | Biowissenschaften Chemie

Designvielfalt für OLED-Beleuchtung leicht gemacht

21.02.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics