Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelnen Molekülen auf der Spur

24.06.2011
Professor Michael Börsch leitet die interdisziplinäre Arbeitsgruppe Mikroskopie-Methodik an der Medizinischen Fakultät. Der Physikochemiker entwickelt optische und spektroskopische Methoden zur Visualisierung der Dynamik einzelner Biomoleküle in der Zelle.

Es ist der Traum der Lebenswissenschaftler: In die lebende Zelle hineinschauen; sehen, wie sich das einzelne Proteinmolekül darin bewegt und seinen Weg verfolgen. Beobachten, wie Enzyme das Molekül umbauen oder zerlegen. Noch ist den Biologen und Medizinern dieser unmittelbare Zugang zu den elementaren Lebensprozessen verwehrt, aber vereinzelt gelingt schon der Blick aufs Molekül in Aktion.

Für das ATP-Synthase genannte Enzym zum Beispiel, das den für alle Stoffwechselprozesse zentralen Energieträger ATP immer wieder auflädt wie ein Ladegerät den Akku. „Durch schaltbare Fluoreszenzfarbstoffe und extrem empfindliche und schnelle Fotosensoren können wir die Aktivität des Enzyms lichtmikroskopisch sichtbar machen und im Zeitverlauf als Film erfassen“, so Michael Börsch. „Daraus lässt sich die Lokalisierung einzelner Enzymproteine auf 20 nm genau berechnen und als Bild darstellen“, ergänzt der 47-jährige Physikochemiker, der seit Mai die Professur für Mikroskopie-Methodik am Universitätsklinikum Jena innehat. Für seine interdisziplinäre Arbeitsgruppe bevorzugt er den programmatischen Namen „Single-Molecule Microscopy Group“.

Nach seinem Chemiestudium in Freiburg arbeitete Michael Börsch in seiner Promotion und als Post-Doc auf dem Gebiet der Fluoreszenz-Spektroskopie in Mitochondrien und mit der ATP-Synthase. Dann wechselte er an die Uni Stuttgart und baute am 3. Physikalischen Institut eine eigene Arbeitsgruppe auf, die zur Einzelmoleküldetektion forscht. „Unser Schwerpunkt lag hier auf dem Förster-Resonanzenergietransfer, mit Hilfe dessen sich die beiden Rotationsmotoren innerhalb einer einzelnen ATP-Synthase sowie die Interaktion einzelner Moleküle untersuchen lassen.“ Da einzelne Projekte noch nicht abgeschlossen sind, wird der dreifache Familienvater zunächst zwischen Jena und Stuttgart pendeln.

Mit seiner neuen Jenaer Arbeitsgruppe wird Michael Börsch Projekte umsetzen, die die Wissenschaftler der Vision von der direkten Beobachtung und der Manipulation einzelner molekularen Maschinen in der lebenden Zelle ein Stück näher bringen. Methoden der Einzelmolekül-Analyse bilden daher auch die Schwerpunkte seiner interfakultären Lehrveranstaltungen. „Jena bietet ein höchst interessantes und attraktives wissenschaftliches Umfeld“, betont Professor Börsch. Wichtige Partner sieht er in den Biophysikern, Elektrophysiologen und Physikochemikern an der Universität, in den Mitgliedern des Zentrums für Medizinische Optik und Photonik und auch in den forschenden Optik-Unternehmen der Region.

Kontakt:
Prof. Dr. Michael Börsch
AG Mikroskopie-Methodik, Universitätsklinikum Jena
Tel. 03641/933745
E-Mail: Michael.Boersch[at]med.uni-jena.de

Dr. Uta von der Gönna | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie