Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfache Methode zur Fluoreszenzmikroskopie mit verbesserter Auflösung in allen drei Raumrichtungen

07.07.2009
Fortschritt bei der bildgebenden Beobachtung von Zellen und Gewebe

Die Arbeitsgruppe Angewandte Laserphysik & Laserspektroskopie unter der Leitung von Professor Dr. Markus Sauer (Fakultät für Physik der Universität Bielefeld) hat ein neues sehr einfaches Verfahren entwickelt, mit dem es möglich ist, biologische Strukturen in Zellen mit circa zweifach besserer Auflösung in allen drei Raumrichtungen abzubilden.

Unter Verwendung eines Standard Laser-Scanning-Fluoreszenz-Mikroskops (LSM), wie es in den Lebenswissenschaften weit verbreitet ist, kann so erstmals für Jedermann zugänglich auf einfache Art und Weise eine Auflösung von circa 130 Nanometer (nm) in zweidimensionaler ("lateraler") und 350 nm in räumlicher ("axialer") Richtung erreicht werden.

Optische Verfahren wie die Fluoreszenzmikroskopie sind ideal zur bildgebenden Beobachtung von Zellen und Gewebe geeignet, da sie es ermöglichen nicht-invasiv dreidimensionale Bilder aufzunehmen. Leider ist der optischen Mikroskopie aufgrund des Wellencharakters des Lichts und der damit verbundenen Beugung eine Auflösungsgrenze von circa der halben Wellen-länge gesetzt.

Das heißt, es ist mit gewöhnlichen lichtmikroskopischen Verfahren nicht möglich, Strukturinformation unterhalb von circa 250 nm in lateraler und circa 600-700 nm in axialer Richtung zu erhalten. Zur Verbesserung der beugungsbedingten Auflösungsgrenze wurden kürzlich neue Methoden wie die STED-Mikroskopie und die Lokalisationsmikroskopie auf Einzelmolekülebene (STORM, dSTORM, PALM) entwickelt, die routinemäßig eine Auflösung von besser als 50 nm in lateraler Richtung versprechen.

Andererseits muss hierfür ein erheblicher technischer Aufwand durch Überlagerung von verschiedenen Laserlinien oder einzelmolekülempfindliche Detektionsverfahren eingesetzt werden, die zusätzlich aufgrund der Strahlungsbelastung nur beschränkt für die Lebendzellmikroskopie eingesetzt werden können.

Es gab aber auch schon früh die Idee, Mehrphotonenanregungsprozesse zur Auflösungserhöhung zu verwenden. Während die Mehrphotonenanregungs-Mikroskopie wesentliche Vorteile beim "Sectioning", der Aufteilung in verschiedene Bildebenen, in axialer Richtung besitzt, wird die Auflösungserhöhung in lateraler Richtung aber durch die längere Anregungswellenlänge kompensiert. Den Forschern um Professor Markus Sauer ist es nun gelungen, Mehrphotonenprozesse in "lumineszierenden" (= leuchtenden) Halbleiterkügelchen, so genannten Quantenpunkten, zur Auflösungserhöhung in allen drei Raumrichtungen in einem Standardmikroskop einzusetzen und damit eine circa zweifach bessere optische Auflösung selbst in lebenden Zellen zu demonstrieren. Hierzu benutzen die Forscher ein Standard Laser-Scanning-Mikroskop. Zur Anregung wird ein einfacher Ar-Ionen-Laser benutzt.

Der Trick liegt darin, dass in manchen Quantenpunkten in Abhängigkeit von ihrem Material und der Größe drei Excitonen (strahlende Elektronen-Loch-Paare), ein so genanntes Triexciton, durch die Absorption von drei Photonen entstehen kann, das bei einer kürzeren Wellenlänge als die herkömmliche Lumineszenz der Quantenpunkte (Mono- und Biexciton) Licht emittiert. Das heißt, die Forscher detektierten die Emission der Probe einfach bei einer kürzeren Wellen-länge und erzielten so eine Auflösungserhöhung um den Faktor ?3 entsprechend einem Drei-Photonen-Prozess in allen drei Raumrichtungen. Die hier zusammengefassten Ergebnisse wurden im Fachjournal "Nano Letters" (Hennig et al., Nano Lett. 2009, 9, 2466-2470) veröffentlicht.

Der Charme des Verfahrens liegt darin, dass es jedem Forscher mit handelsüblichem Fluoreszenzmikroskop möglich ist, nun eine bessere Auflösung in allen drei Raumrichtungen auch in lebenden Zellen und Gewebe zu realisieren und - das nur durch die Verwendung von Quantenpunkten als effiziente Marker und der Detektion des Signals bei einer kürzeren Wellenlänge.

Kontakt:

Prof. Dr. Markus Sauer, Universität Bielefeld
Fakultät für Physik
Tel.: 0521/106-5451
E-Mail: sauer@physik.uni-bielefeld.de

Torsten Schaletzke | idw
Weitere Informationen:
http://www.uni-bielefeld.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics