Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfache Methode zur Fluoreszenzmikroskopie mit verbesserter Auflösung in allen drei Raumrichtungen

07.07.2009
Fortschritt bei der bildgebenden Beobachtung von Zellen und Gewebe

Die Arbeitsgruppe Angewandte Laserphysik & Laserspektroskopie unter der Leitung von Professor Dr. Markus Sauer (Fakultät für Physik der Universität Bielefeld) hat ein neues sehr einfaches Verfahren entwickelt, mit dem es möglich ist, biologische Strukturen in Zellen mit circa zweifach besserer Auflösung in allen drei Raumrichtungen abzubilden.

Unter Verwendung eines Standard Laser-Scanning-Fluoreszenz-Mikroskops (LSM), wie es in den Lebenswissenschaften weit verbreitet ist, kann so erstmals für Jedermann zugänglich auf einfache Art und Weise eine Auflösung von circa 130 Nanometer (nm) in zweidimensionaler ("lateraler") und 350 nm in räumlicher ("axialer") Richtung erreicht werden.

Optische Verfahren wie die Fluoreszenzmikroskopie sind ideal zur bildgebenden Beobachtung von Zellen und Gewebe geeignet, da sie es ermöglichen nicht-invasiv dreidimensionale Bilder aufzunehmen. Leider ist der optischen Mikroskopie aufgrund des Wellencharakters des Lichts und der damit verbundenen Beugung eine Auflösungsgrenze von circa der halben Wellen-länge gesetzt.

Das heißt, es ist mit gewöhnlichen lichtmikroskopischen Verfahren nicht möglich, Strukturinformation unterhalb von circa 250 nm in lateraler und circa 600-700 nm in axialer Richtung zu erhalten. Zur Verbesserung der beugungsbedingten Auflösungsgrenze wurden kürzlich neue Methoden wie die STED-Mikroskopie und die Lokalisationsmikroskopie auf Einzelmolekülebene (STORM, dSTORM, PALM) entwickelt, die routinemäßig eine Auflösung von besser als 50 nm in lateraler Richtung versprechen.

Andererseits muss hierfür ein erheblicher technischer Aufwand durch Überlagerung von verschiedenen Laserlinien oder einzelmolekülempfindliche Detektionsverfahren eingesetzt werden, die zusätzlich aufgrund der Strahlungsbelastung nur beschränkt für die Lebendzellmikroskopie eingesetzt werden können.

Es gab aber auch schon früh die Idee, Mehrphotonenanregungsprozesse zur Auflösungserhöhung zu verwenden. Während die Mehrphotonenanregungs-Mikroskopie wesentliche Vorteile beim "Sectioning", der Aufteilung in verschiedene Bildebenen, in axialer Richtung besitzt, wird die Auflösungserhöhung in lateraler Richtung aber durch die längere Anregungswellenlänge kompensiert. Den Forschern um Professor Markus Sauer ist es nun gelungen, Mehrphotonenprozesse in "lumineszierenden" (= leuchtenden) Halbleiterkügelchen, so genannten Quantenpunkten, zur Auflösungserhöhung in allen drei Raumrichtungen in einem Standardmikroskop einzusetzen und damit eine circa zweifach bessere optische Auflösung selbst in lebenden Zellen zu demonstrieren. Hierzu benutzen die Forscher ein Standard Laser-Scanning-Mikroskop. Zur Anregung wird ein einfacher Ar-Ionen-Laser benutzt.

Der Trick liegt darin, dass in manchen Quantenpunkten in Abhängigkeit von ihrem Material und der Größe drei Excitonen (strahlende Elektronen-Loch-Paare), ein so genanntes Triexciton, durch die Absorption von drei Photonen entstehen kann, das bei einer kürzeren Wellenlänge als die herkömmliche Lumineszenz der Quantenpunkte (Mono- und Biexciton) Licht emittiert. Das heißt, die Forscher detektierten die Emission der Probe einfach bei einer kürzeren Wellen-länge und erzielten so eine Auflösungserhöhung um den Faktor ?3 entsprechend einem Drei-Photonen-Prozess in allen drei Raumrichtungen. Die hier zusammengefassten Ergebnisse wurden im Fachjournal "Nano Letters" (Hennig et al., Nano Lett. 2009, 9, 2466-2470) veröffentlicht.

Der Charme des Verfahrens liegt darin, dass es jedem Forscher mit handelsüblichem Fluoreszenzmikroskop möglich ist, nun eine bessere Auflösung in allen drei Raumrichtungen auch in lebenden Zellen und Gewebe zu realisieren und - das nur durch die Verwendung von Quantenpunkten als effiziente Marker und der Detektion des Signals bei einer kürzeren Wellenlänge.

Kontakt:

Prof. Dr. Markus Sauer, Universität Bielefeld
Fakultät für Physik
Tel.: 0521/106-5451
E-Mail: sauer@physik.uni-bielefeld.de

Torsten Schaletzke | idw
Weitere Informationen:
http://www.uni-bielefeld.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics