Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblick in die Struktur eines Proteintransporthelfers

14.01.2014
Proteine sind die molekularen Baustoffe und Maschinen der Zelle und an praktisch allen Lebensprozessen beteiligt.

Um ihre Aufgaben korrekt ausführen zu können, werden viele Proteine nach ihrer Herstellung mit Anhängen wie Zuckerresten versehen. Dieser Prozess ist direkt an den Transport durch eine Membran gekoppelt.


Viele Proteinkomplexe sind an der Synthese von Eiweißen beteiligt. Durch das ER-Translokon (grün, blau und rot) wird das neu synthetisierte Protein über die Membran (grau) in das ER geschleust.

Grafik: Friedrich Förster / Copyright: MPI für Biochemie

Wissenschaftlern am Max-Planck-Institut (MPI) für Biochemie ist es jetzt mit Hilfe verschiedener strukturbiologischer Methoden gelungen, einen Einblick in die Architektur des verantwortlichen Proteinkomplexes (ER-Translokon) zu gewinnen. Die Ergebnisse des Gemeinschaftsprojekts wurden jetzt in Nature Communications veröffentlicht.

Ein Protein herzustellen, ist für die Zelle ein hoch komplexer Prozess und beinhaltet viele einzelne Schritte. Je nachdem für welchen Zweck ein Protein gebraucht wird, gibt es verschiedene Orte der Proteinproduktion: das Zellinnere, auch Zellplasma genannt, oder das Endoplasmatische Retikulum (ER).

Das ER ist durch eine Membran von seiner Umgebung, dem Zellplasma, getrennt. Proteine, die am ER hergestellt werden, gelangen noch während der Synthese über diese Membran in das Innere des ERs und werden dabei durch das Anhängen von Zuckerresten verändert. Ohne diese Anhänge können sich Proteine nicht korrekt falten und so auch ihre Aufgaben in der Zelle nicht erfüllen.

Wissenschaftler der Forschungsgruppe „Modellierung von Proteinkomplexen“ konnten jetzt die Architektur des Proteinkomplexes beschreiben, der für den Transport und die Veränderung des neu produzierten Proteins verantwortlich ist: das ER-Translokon. „Es befindet sich in der Membran des ERs, was neben seiner Größe und komplexen Zusammensetzung bisherige strukturelle Untersuchungen erheblich erschwert hat“, beschreibt Friedrich Förster, Gruppenleiter am MPI für Biochemie, die Ausgangssituation. Die Strukturen vieler Untereinheiten sowie ihre Anordnung im Gesamtkomplex des ER-Translokons waren daher bisher unbekannt.

Erst durch die Verwendung der Kryo-Elektronentomographie konnten die Forscher einen ersten Einblick in die Architektur des ER-Translokons erhalten. Die Probe wird „schockgefroren“, sodass ihre natürliche Struktur erhalten bleibt. Dann nehmen die Wissenschaftler aus verschiedenen Blickwinkeln zweidimensionale Bilder des Objekts im Elektronenmikroskop auf, aus denen sie schließlich ein dreidimensionales Bild rekonstruieren. Weitere Untersuchungen machten es möglich, einzelne Untereinheiten in der Struktur zu identifizieren. Darunter ist auch die Untereinheit, die Zuckerreste an das neu produzierte Protein knüpft.

„Basierend auf dieser Methodik wollen wir jetzt versuchen, die Struktur und Lage weiterer Komponenten des ER-Translokons zu bestimmen“, so Förster. Kennen die Forscher die einzelnen Strukturen des ER-Translokons, können sie indirekt auf die genaue Funktionsweise und das Zusammenwirken aller Bestandteile rückschließen.

Originalveröffentlichung
Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Förster, F.: Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Commun, January 10, 2014

Doi: 10.1038/ncomms4072 (2013).

Kontakt
Dr. Friedrich Förster
Modellierung von Proteinkomplexen
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Email: foerster@biochem.mpg.de
http://www.biochem.mpg.de/foerster
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/foerster
- Webseite der Forschungsgruppe "Modellierung von Proteinkomplexen" (Friedrich Förster)
http://www.biochem.mpg.de/3678792/072_foerster_er-translokon
- vollständige Pressemitteilung

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten