Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein selektiver Wirkstoff hält Blutgefäße in Schach

23.07.2015

Durch unkontrolliert wachsende Blutgefäße im Auge, welche die Netzhaut schädigen, können die Betroffenen erblinden. Wissenschaftler des Deutschen Krebsforschungszentrums (DKFZ) haben nun ein Molekül gefunden, dass diesen Prozess möglicherweise stoppt: Das Protein Semaphorin 3C (Sema3C) hemmt im Tiermodell effektiv das krankhafte Wachstum von Blutgefäßen im Auge. Sema3C wird vom Körper selbst produziert. Seine eigentliche Aufgabe besteht darin, das Wachstum von Nervenzellen zu kontrollieren.

Wenn Wunden heilen oder sich Embryonen entwickeln, muss der Körper neue Blutgefäße bilden. Diese sogenannte Angiogenese kann bei bestimmten Krankheiten jedoch außer Kontrolle geraten. Krebszellen sorgen beispielsweise dafür, dass neu gebildete Blutgefäße den hohen Nährstoffbedarf des Tumors decken. Auch im Auge können unkontrolliert wachsende Blutgefäße zum Problem werden, wenn diese aus der Netzhaut auswachsen. Es ist dann möglich, dass sich die Netzhaut ablöst und die betroffene Person erblindet.


Unreife Gefäße sprossen bei der Frühgeborenen-Retinopathie aus (rot: Endothelzellen, grün: Wandzellen (Perizyten)). Quelle: Andreas Fischer /DKFZ

Frühgeborene erkranken häufig an der Netzhaut (Retinopathie), was schwierig zu behandeln ist. Ursache dafür ist die erhöhte Sauerstoffkonzentration, die entsteht, wenn die Frühchen künstlich beatmet werden.

Die unreifen Gefäße in den Augen der Frühchen reagieren darauf empfindlich und können sich so falsch entwickeln. In schwerwiegenden Fällen müssen die Ärzte eine Retinopathie mit dem Laser veröden. Diese invasive Therapie lässt, auch wenn sie erfolgreich eingesetzt wird, ein Restrisiko dafür zurück, dass sich die Netzhaut nachträglich ablöst.

Derzeit suchen Forscher nach Möglichkeiten, statt mit dem Laser zu veröden, die fehlgebildeten Blutgefäße mit spezifischen Hemmstoffen zu behandeln. Im Mittelpunkt stand dabei bislang der vaskuläre Wachstumsfaktor VEGF.

Dieser muss allerdings sehr niedrig dosiert werden, da auch das restliche Gefäßsystem von diesem Wachstumsfaktor abhängig ist. Um eine Alternative zu finden, suchten die Heidelberger Wissenschaftler an einer ungewöhnlichen Stelle: an den Nerven.

„Es war schon länger bekannt, dass das Wachstum von Nervenbahnen und Blutgefäßen sehr ähnlich reguliert wird“, erklärt Andreas Fischer, Leiter der Arbeitsgruppe „Vaskuläre Signaltransduktion und Krebs“ am DKFZ und gleichzeitig Arzt in der Klinik für Endokrinologie, Stoffwechsel und Klinische Chemie am Universitätsklinikum Heidelberg.

„Sema3C kommt an den Nervenbahnen natürlich vor, kann aber auch an neu gebildete Blutgefäße binden. Wir haben damit einen spezifischen Faktor gefunden, der selektiv (nur neu gebildete,) noch unreife Gefäßzellen am Wachsen hindert.“ Sema3C bindet an Rezeptoren auf der Oberfläche der unreifen Gefäßzellen und gibt diesen damit ein wachstumshemmendes Signal.

Die zwei Rezeptoren, an die Sema3C bindet, befinden sich in der Netzhaut also nur auf unreifen Gefäßen, die bei der Retinopathie entstehen. Aus diesem Grund könnte Sema3C zielgerichtet das Wachstum genau dieser Blutgefäße hemmen. Die DKFZ-Forscher konnten bereits künstlich erzeugte Retinopathien bei Mäusen erfolgreich mit Sema3C behandeln. Dabei arbeiteten sie eng mit der Abteilung „Vaskuläre Onkologie“ von Hellmut Augustin, ebenfalls am DKFZ sowie an der Medizinischen Fakultät Mannheim der Universität Heidelberg, zusammen.

„Das Wachstum von Blutgefäßen konnten wir in der Zellkulturschale nachbilden und isoliert betrachten“, erläutert Andreas Fischer. „Dazu haben wir eine neuartige Hydrogel-Matrix verwendet, in der die Gefäßzellen unter gewebsähnlichen Bedingungen wachsen können.“ Diese Matrix versetzt die Gefäßzellen in eine Ruhephase, wie sie auch im Körper der Normalzustand ist. Dadurch konnten die Forscher testen, wie Sema3C auf menschliche Zellen wirkt, bevor sie das Molekül Mäusen verabreichten. Derzeit vergleichen die Wissenschaftler, ob Sema3C tatsächlich besser wirkt als die herkömmliche Hemmstofftherapie.

Eventuell eignet sich Sema3C auch dazu, weitere Krankheiten zu behandeln. An der Makuladegeneration erkranken vor allem ältere Menschen. Auch hier spielen unkontrolliert sprießende Blutgefäße aus der Netzhaut eine große Rolle. Israelische Wissenschaftler fanden zudem kürzlich heraus, dass Sema3C die Bildung von Lymphgefäßen im Tumor unterdrücken kann.

Lymph- und Blutgefäße versorgen Tumoren mit Nährstoffen, weshalb Tumoren deren Wachstum anregen. Zwar existieren bereits Therapien mit dem Ziel, die Tumoren von der Anbindung an die Gefäße abzuschneiden, doch treffen diese auch ruhende Gefäßzellen. Sema3C hingegen könnte selektiver eingreifen und dem Tumor so die Wachstumsgrundlage entziehen.

Wan‐Jen Yang, Junhao Hu, Akiyoshi Uemura, Fabian Tetzlaff, Hellmut G Augustin, Andreas Fischer: Semaphorin‐3C signals through Neuropilin‐1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Molecular Medicine 2015, DOI 10.15252/emmm.201404922


Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

  www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops