Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nanographen mit Hunger auf Elektronen

13.04.2016

Im Herbst 2015 hat das Graduiertenkolleg „Molekulare Biradikale“ seine Arbeit an der Uni Würzburg aufgenommen. Jetzt liegt ein erstes Ergebnis dieser Zusammenarbeit von Chemikern und Physikern vor: eine Publikation über ein neues Molekül, das für die organische Elektronik interessant ist.

Der Laie sieht einen dunkel-violetten Feststoff, der über keine sonderlich spektakulären Eigenschaften zu verfügen scheint. Der Experte hingegen freut sich über ein Nanographen-System mit 64 Kohlenstoffatomen in seinem Zentrum, das sich durch eine „Armut“ an Elektronen auszeichnet.


Über einen Nanometer groß ist das Molekül, das Würzburger Chemiker erstmals synthetisiert haben. Seine Tendenz, Elektronen aufzunehmen, macht es so interessant.

Grafik: Sabine Seifert

Sabine Seifert, Doktorandin am Lehrstuhl für Organische Chemie II, ist es unter Anleitung von Lehrstuhlinhaber Professor Frank Würthner jetzt gelungen, dieses System erstmals zu synthetisieren und in seiner Struktur zu analysieren. Die Fachzeitschrift Angewandte Chemie berichtet darüber in ihrer internationalen Ausgabe.

Kapazität für bis zu vier Elektronen

Eine Pyrenvorstufe erweitert um vier Naphtalimide bilden das neue Molekül, das in seinem Kern 64 sp2-hybridisierte Kohlenstoffatome trägt. In diesem Zentrum liegen die Atome flach nebeneinander und bilden eine planare Ebene; erst an seinem Rand, wo die Seitenketten ansetzen, nimmt die Dicke zu. Etwas mehr als einen Nanometer – also den millionstel Teil eines Millimeters – beträgt seine Kantenlänge.

Seine Besonderheit: „Es ist uns damit gelungen, eines der größten elektronenarmen Moleküle zu synthetisieren“, erklärt Sabine Seifert. Vergleichbare Synthesewege gebe es bislang nur wenige, so die Doktorandin. „Und die Synthesemethode, bei der zehn Kohlenstoff-Kohlenstoff-Bindungen auf einmal geknüpft werden, ist ebenfalls neu und könnte sich als wegweisend für die Herstellung einer neuen Materialklasse polycyclischer Aromaten erweisen“, fügt Professor Frank Würthner hinzu.

„Elektronenarm“: Das hat zur Konsequenz, dass das neue Molekül die Tendenz hat, weitere Elektronen aufzunehmen. Bis zu vier davon kann es sich „einverleiben“, konnte die junge Nachwuchswissenschaftlerin zeigen. Damit wird es für die organische Elektronik interessant. Als organischer Halbleiter könnte es dort den Elektronentransport übernehmen und neue Einsatzgebiete eröffnen.

Zusammenarbeit im Graduiertenkolleg

Einen neuen Syntheseweg entdecken und anschließend die Struktur und die Eigenschaften des so synthetisierten Moleküls aufschlüsseln: Das ist das Ziel der Zusammenarbeit in dem Graduiertenkolleg 2112, das im vergangenen Herbst an der Universität Würzburg gestartet ist und dessen Sprecher Ingo Fischer, Professor für Physikalische Chemie, ist.

In dessen Mittelpunkt stehen zwar eigentlich sogenannte Biradikale – also Moleküle mit zwei ungepaarten Elektronen. Denen kommt das neue Nanographen-System allerdings ziemlich nahe, wenn man es „nur“ mit zwei Elektronen auflädt. Es könnte aber auch Tri- und Tetraradikale möglich machen und damit bereits über die Zielsetzung des Graduiertenkollegs hinausgehen.

„Wir untersuchen, inwieweit die Elektronen miteinander wechselwirken, wie sich ihr Spin verhält und ob sich möglicherweise (bi-)radikalische Zustände entwickeln“, erklärt Sabine Seifert. Biradikale spielen unter anderem bei Verbrennungsprozessen oder in der Atmosphärenchemie eine wichtige Rolle.

So gehören zum Beispiel Sauerstoff und Ozon zu dieser Verbindungsklasse. Ihre Eigenschaften können darüber hinaus für die Entwicklung neuer optoelektronischer Materialien genutzt werden. Aus diesem Grund ist es das Ziel des Graduiertenkollegs, die physikalischen und chemischen Eigenschaften von Biradikalen noch besser zu verstehen und gezielt zu beeinflussen.

Gut zwei Jahre hat Sabine Seifert im Rahmen ihrer Doktorarbeit im Labor experimentiert, bis ihr die Synthese des Nanographen-Systems gelungen ist. In einem nächsten Schritt plant sie nun, die Seitenketten zu variieren und zu untersuchen, wie sich diese Veränderungen auf die Eigenschaften des Moleküls auswirken.

An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis. Sabine Seifert, Kazutaka Shoyama, David Schmidt, and Frank Würthner. Angewandte Chemie, DOI: 10.1002/ange.201601433

Kontakt

Prof. Dr. Frank Würthner, Institut für Organische Chemie der Universität Würzburg
T: (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten