Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kompass in der Dunkelheit

09.03.2018

Ein Forschungsteam unter Federführung des Helmholtz Zentrums München und der Technischen Universität München (TUM) hat in ‚Nature Communications‘ ein neues Modell vorgestellt, um den Magnetsinn zu untersuchen. Ihre Studien an Fischen ermöglichten sowohl die Messung von Gehirnaktivierung durch Magnetfeldstimulation als auch den Nachweis, dass der Magnetsinn auch in Dunkelheit funktioniert.

Als Magnetsinn wird die Fähigkeit von Tieren bezeichnet, das Magnetfeld der Erde wahrzunehmen und für die Navigation zu nutzen. Wie das genau funktioniert, ist bisher aber nicht verstanden. „Dabei könnte dieses Wissen abseits der neurowissenschaftlichen Neugier zu neuen molekularen Methoden führen“, erklärt Prof. Dr. Gil Gregor Westmeyer.


Ein Kompass in der Dunkelheit

© Westmeyer/Helmholtz Zentrum München

Er ist der Leiter der aktuellen Forschungsarbeit an der Schnittstelle von molekularer Bildgebung und Neurowissenschaften und ist mit seiner Arbeitsgruppe sowohl an das Helmholtz Zentrum München als auch an die TUM angebunden.

„Wäre es möglich, den Mechanismus nachzubauen, könnte man vermutlich Zellen durch magnetische Impulse steuern und beispielsweise dazu bringen, bestimmte Botenstoffe auszuschütten.“ Um an diesen Punkt zu gelangen, suchten Westmeyer und sein Team nach einem Modell, um den Magnetsinn zu ergründen.

Die Wissenschaftler konzentrierten ihre Arbeit auf den Zebrafisch und dessen Verwandten den Medaka (Japanischer Reisfisch). Beide sind genetisch gut erforscht und können mikroskopisch gut analysiert werden.*

In einer Testarena, in dem das Magnetfeld mit Hilfe sogenannter Helmholtz-Spulen** verändert werden kann, untersuchten die Forscher das Schwimmverhalten. Dabei fanden sie heraus, dass ausgewachsene Fische beider Arten (bei ansonsten gleich bleibenden Bedingungen) ihre Ausrichtung abhängig vom Magnetfeld änderten. Dieser Effekt trat auch in Dunkelheit auf, sodass auch ein lichtunabhängiger Mechanismus angenommen werden muss.

„In diesem Modell können wir nun nach den bisher nicht identifizierten Magnetrezeptorzellen suchen, von denen unsere Verhaltensexperimente gemäß der Theorie vorhersagen, dass sie magnetisches Material beinhalten sollten“, erklärt Doktorandin Ahne Myklatun, eine der Erstautorinnen der Arbeit.

Darüber hinaus konnten die Forscher einen ähnlichen Magnetfeld-abhängigen Effekt in jungen Fischen zeigen. „Das ist ein entscheidender Vorteil, denn in ihren frühen Entwicklungsstadien sind die Fische noch nahezu durchsichtig“, erklärt Postdoktorandin Dr. Antonella Lauri, die andere Erstautorin der Arbeit. „Auf diese Weise können wir mit bildgebenden Verfahren möglicherweise herausfinden, welche Hirnregionen aktiv sind, während sie sich anhand des Magnetfeldes orientieren.“ Eine Kandidatenregion für die Verarbeitung dieser Prozesse im Gehirn konnten die Wissenschaftler bereits identifizieren - eine Spur, die auch zu den unbekannten Magnetrezeptorzellen führen könnte.

Gil Gregor Westmeyer, Leiter der vom Europäischen Forschungsrat (ERC) geförderten Studie fasst zusammen: „Der Magnetsinn ist einer der wenigen noch unverstandenen Sinne auf der Welt. Diese Art multidisziplinärer Arbeit wird letztendlich zum Verständnis seines biophysikalischen Mechanismus und zu den ihm zugrundeliegenden neuronalen Berechnungen beitragen. Die dabei gewonnenen Erkenntnisse könnten auch interessante Lösungsansätze für unsere Forschungsarbeit bieten, Systeme zur Fernsteuerung von molekularen Prozessen mit Magnetfeldern zu entwickeln."

Weitere Informationen

* Kürzlich ist es Westmeyer und seinem Team gelungen ein Open Source-Mikroskop zu entwickeln (NeuBtracker.org), das es erstmals erlaubt, neuronale Aktivitäten des Modellorganismus Zebrafisch zu beobachten, während dieser sich frei bewegt.

** Als Helmholtz-Spule bezeichnet man eine besondere Spulenanordnung, die auf den deutschen Physiker Hermann von Helmholtz (1821–1894) zurückgeht. Durch die Überlagerung mehrerer Einzelmagnetfelder ergibt sich zwischen den Spulen nahe der Spulenachse ein Bereich mit weitgehend homogenem Magnetfeld, das für Experimente frei zugänglich ist.

Hintergrund:
Langfristig möchte das Team die Erkenntnisse für neue Techniken der Magnetogenetik einsetzen, ein innovatives Forschungsprogramm das wohl auch im neuen Helmholtz Pioneer Campus (HPC) eine Rolle spielen könnte. Hier wollen Forscher verschiedener Disziplinen miteinander an neuen Lösungen für medizinische Fragestellungen arbeiten. „So wäre es beispielsweise im Diabetes-Kontext denkbar, Zellen zu entwickeln, die durch einen Magneten dazu gebracht werden, Insulin auszuschütten“, so Westmeyer.

An der Arbeit waren auch Wissenschaftlerinnen und Wissenschaftler der Universitäten Oldenburg und Hohenheim sowie der Ludwig-Maximilians-Universität (LMU) beteiligt. Prof. Dr. Gil Gregor Westmeyer ist Helmholtz-seitig an die Institute für Biologische und Medizinische Bildgebung (IBMI) und Entwicklungsgenetik (IDG) angebunden. Darüber hinaus arbeitet er an der Nuklearmedizinischen Klinik und Munich School of Bioengineering (MSB) der Technischen Universität München (TUM).

Original-Publikation:
Myklatun, A. & Lauri, A. et al. (2018): Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. Nature Communications, DOI: 10.1038/s41467-018-03090-6

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen. http://www.helmholtz-muenchen.de/ibmi

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert die TU München von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 2238, E-Mail: presse@helmholtz-muenchen.de

Wissenschaftlicher Ansprechpartner:
Prof. Dr. Gil Westmeyer, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Biologische und Molekulare Bildgebung, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2123, E-Mail: gil.westmeyer@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: Dunkelheit Helmholtz Kompass Magnetfeld Magnetsinn TUM Umwelt Zebrafisch Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics