Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelt hält besser: ChemikerInnen der Universität Wien verbessern Synthese zur Wirkstoffgewinnung

06.07.2015

Zur Gewinnung von medizinischen Wirkstoffen werden mit Hilfe der Synthesechemie aus einfachen Bestandteilen komplizierte chemische Verbindungen erzeugt. Nuno Maulide und sein Team vom Institut für Organische Chemie der Universität Wien haben nun einen Katalysator für die Synthese neuer Moleküle entwickelt, die einen schnelleren Zugang zu wertvollen Produkten ermöglicht. Die Arbeit dazu erschien kürzlich im renommierten Fachjournal "Angewandte Chemie".

Viele organische Moleküle besitzen eine dreidimensionale Struktur, welche es ihnen ermöglicht in zwei Formen zu existieren. Auf den ersten Blick unterscheiden sie sich nur minimal, verhalten sich aber zueinander, wie die rechte zur linken Hand – sie sind Spiegelbilder.


Allgemeine Darstellung von einem konventionellen Katalysator im Vergleich mit dem neuen Katalysatordesign.

Copyright: Nuno Maulide

Moleküle, welche die Eigenschaft besitzen spiegelbildlich aber nicht ident zu sein, werden als chirale Verbindungen bezeichnet – die beiden Spiegelbilder werden hierbei Enantiomere genannt. Diese chiralen Verbindungen sind sowohl in der Chemie, als auch der Biologie von großem Nutzen, weshalb der Entwicklung von neuen Methoden ihrer Synthese in der organischen Chemie große Bedeutung beigemessen wird.

Asymmetrische Katalyse

Eine besonders effektive Methode, ausschließlich ein Enantiomer eines chiralen Moleküls zu erzeugen, ist die Verwendung kleiner Mengen eines chiralen Katalysators. Hierbei können wenige Moleküle eines Katalysators die Bildung großer Mengen des Zielmoleküls über mehrere Katalysezyklen bewirken. "Im Forschungsgebiet der asymmetrischen Metallkatalyse bilden ein Metallzentrum und ein daran geknüpfter chiraler Ligand, also ein metallbindendes Molekül, den Katalysator", erklärt Nuno Maulide vom Institut für Organische Chemie der Universität Wien. Dieser muss, je nach Art der angestrebten Transformation, so gewählt und modifiziert werden, dass ideale Ergebnisse erzielt werden.

Ein neuer "Superligand"

Die Gruppe um Nuno Maulide hat nun einen neuen chiralen Liganden entwickelt, der die asymmetrische Synthese mit Gold bewirken kann. Das neue Design ermöglicht die gleichzeitige Verwendung von nicht einem, sondern zwei Goldatomen, welche an ein einziges Molekül des Liganden gekoppelt sind. Darüber hinaus erlaubt es der neue Ligand dem Metall, eine Vielzahl an verschiedenen Transformationen zu katalysieren. "Ein veritabler Superligand", freut sich Maulide.

Schneller Zugang zu wertvollen Produkten

Ein Schlüsselmerkmal des neuen Katalysatordesigns ist das Vorhandensein von zwei Goldzentren. Die ForscherInnen standen nun vor der Frage, ob das zweite Metallzentrum einen besonders ausgeprägten, positiven Effekt auf die Reaktion hat. Ein einfaches Kontrollexperiment konnte schließlich zeigen, dass das zweite Goldatom tatsächlich nötig ist um optimale Ergebnisse zu erhalten. Die Produkte, die durch diese Transformation zugänglich gemacht werden, sind höchst wertvolle Synthesezwischenstufen mit ausgeprägter biologischer Aktivität. Dank dieser Neuentwicklung kann etwa der Aromastoff "Whisky-Lacton" in lediglich zwei zusätzlichen Synthesestufen hergestellt werden.

Publikation in "Angewandte Chemie":
Dimeric TADDOL-Phosphoramidites in Asymmetric Catalysis: Domino Deracemization and Cyclopropanation of Sulfonium Ylides. Sebastian Klimczyk, Antonio Misale, Xueliang Huang und Nuno Maulide. In: Angewandte Chemie
DOI: 10.1002/anie.201503851
http://onlinelibrary.wiley.com/doi/10.1002/ange.201503851/abstract

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
stv. Vorstand des Instituts für
Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T: +43-1-4277-521 55
M: +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren Kooperationspartnern, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik