Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA als zukünftige elektronische Komponente?

06.07.2012
Leitfähige Nanostrukturen auf Basis metallisierter DNA

Unsere elektronischen Geräte werden immer kleiner und können gleichzeitig immer mehr. Mit den konventionellen Materialien ist die Grenze jedoch bald erreicht. Für die Elektronik von Morgen müssen Alternativen her, beispielsweise Nanodrähte aus DNA, die als Leiterbahnen und Nanotransistoren für Schaltkreise in Miniaturformat dienen könnten. Deutsche Wissenschaftler beschreiben in der Zeitschrift Angewandte Chemie eine neue Methode zu Herstellung stabiler, leitfähiger DNA-Nanodrähte.


Metallisierte, leitfähige DNA könnte in Zukunft als Komponente in elektronischen Bauteilen verwendet werden. (c) Wiley-VCH

DNA ist nicht nur Träger unserer Erbinformationen, sie ist auch ein interessanter Baustoff für die Nanotechnologie. Grund sind ihre außergewöhnlichen Selbstorganisationseigenschaften. So wird DNA oft als „Gussform“ für die Herstellung nanoskaliger Strukturen verwendet. Soll sie zum Aufbau von elektronischen Schaltkreisen verwendet werden, steht man allerdings vor dem Problem, dass DNA elektrischen Strom nur sehr schlecht leitet. Ein Ausweg ist die Abscheidung von Metall auf den DNA-Strängen.

Wissenschaftler von der RWTH Aachen und der Universität München haben nun eine neue Strategie entwickelt, um DNA-Nanostrukturen kontrolliert herzustellen und zu metallisieren. Das Team um Ulrich Simon verwendet dazu einen DNA-Strang, der aus einer Immobilisierungs- und einer Metallisierungssequenz besteht. Mehrere solcher Stränge werden aneinander gehängt, sodass die entstehende DNA beide Abschnitte abwechselnd enthält.

Die Immobilisierungssequenz trägt Alkingruppen. Über diese lässt sich die DNA an einem mit Azidgruppen bestückten Siliciumwafer mit einer als „Klickchemie“ bezeichneten Reaktion fast wie mit einem Druckknopf befestigen. Der andere DNA-Abschnitt hat zwei Aufgaben. Er wird mit funktionellen Gruppen ausgestattet, an denen sich Silberteilchen anlagern. Gleichzeitig können sie DNA-Stränge untereinander verknüpfen.

Die DNA-Stränge werden gestreckt, auf die Wafer aufgetragen und per „Klick“ daran befestigt. Während der anschließenden Metallisierung mit Silberteilchen kommt es gleichzeitig zu einer Vernetzung benachbarter Stränge, sodass sich Multistränge bilden. Sie zeigen eine deutlich höhere strukturelle Stabilität als Einzelstränge. In der Zukunft könnten die DNA-Stränge auf diese Weise aber auch in programmierbare DNA-Architekturen integriert werden, um eine Positionierung und Anbindung komplexer Strukturen auf vorstrukturierten Substraten zu ermöglichen.

Die Metallisierung ist mit der Anlagerung der Silberteilchen aber noch nicht abgeschlossen. In einem zweiten Schritt, der dem photographischen Entwicklungsprozess ähnelt, kann Gold aus einer Lösung an den Silberteilchen abgeschieden werden. Über die Dauer der Goldabscheidung kann der Durchmesser der Nanodrähte variiert werden.

Mit der neuen Methode erhielten die Wissenschaftler mikrometerlange, elektrisch kontaktierbare Nanodrähte, die das Potenzial für die Herstellung weiter miniaturisierter Schaltkreise haben.

Angewandte Chemie: Presseinfo 25/2012

Autor: Ulrich Simon, RWTH Aachen University (Germany), http://www.ac.rwth-aachen.de/extern/ak-simon/ulrich_simon.htm

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201202401

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics