Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA-Origami-Faltung bildet einen intelligenten Verschluss für festkörperbasierte Nanoporen

19.04.2012
Eine neu entwickelte Variante von festkörperbasierten Nanosensoren wurde mit ein paar Tricks aus der Bionanotechnologie verbessert, so dass die Möglichkeiten zur Messung von Einzelmolekülen und damit ein markierungsfreies Screening von Proteinen erweitert wurden.
Forschern an der TU München ist es gelungen, die Funktionalität von Festkörper-Nanoporen zu verbessern, indem sie diese mit Nanoplättchen-Deckeln aus DNA als eine Art Verschluss versehen haben. Die Ergebnisse dieser Forschungsarbeiten wurden in der Zeitschrift Angewandte Chemie, International Edition, veröffentlicht.

Zentrale Öffnungen in diesen Plättchen fungieren als „Torwächter“ und kontrollieren quasi einzelne Moleküle beim Passieren der Nanoschleuse. Gebildet werden diese Deckel mit dem sogenannten DNA-Origami-Verfahren: Abgeleitet von der japanischen Faltkunst Origami werden DNA-Stränge so synthetisiert, dass sie sich zu maßgeschneiderten Strukturen mit spezifischen chemischen Eigenschaften falten.
Im Verlauf der letzten Jahre ist es der Forschungsgruppe um Prof. Hendrik Dietz an der TUM gelungen, die DNA-Origami-Technik deutlich zu verfeinern. Dabei konnten sie zeigen, dass die mit Origami-Technik hergestellten Strukturen für Forschungszwecke in unterschiedlichsten Bereichen eingesetzt werden können. Ähnliche Fragen zur Messung einzelner Moleküle hat zur gleichen Zeit das Team von Dr. Ulrich Rant mit festkörperbasierten Nanoporen-Sensoren untersucht. Das messtechnische Prinzip dieser Sensoren basiert auf einer dünnen Halbleitermembran mit wenige Nanometer großen Öffnungen, durch die die gewünschten Biomoleküle einzeln geschleust werden. Wenn Biomoleküle durch diese Poren schlüpfen oder dort verweilen, liefern kleinste Änderungen des elektrischen Stroms, der durch die Nanopore fließt, Informationen über ihre charakteristischen physikalischen Eigenschaften. Inzwischen untersuchen Dietz und Rant gemeinsam – beide sind Fellows des TUM Institute for Advanced Study – welche Möglichkeiten eine kombinierte Anwendung dieser beiden Technologien eröffnen könnte.

Für das neue Messverfahren – das vor diesen Experimenten rein hypothetischer Natur war – wird zunächst ein DNA-Origami-Nanoplättchen über dem schmalen Ende einer konisch zulaufenden Festkörper-Nanopore positioniert. Durch eine Modifikation der Größe der zentralen Öffnung in der DNA-Nanoplatte lässt sich eine Filterung von Molekülen nach ihrer Größe erreichen. Um das System weiter zu verfeinern, werden Einzelstrang-DNA-Rezeptoren in der Öffnung als eine Art „Köder“ platziert, die sequenzspezifisch Zielmoleküle binden und damit den Nachweis einzelner Moleküle ermöglichen. Weitere denkbare Anwendungen sind hier unter anderem biomolekulare Interaktions-Screens und der Nachweis einzelner DNA-Sequenzen. Im Prinzip könnte man dieses System auch als Grundlage für ein neues Verfahren zur DNA-Sequenzierung nutzen.

Die Wissenschaftler untersuchten jede dieser Ideen Schritt für Schritt. Dabei konnten sie sowohl die Selbstorganisation von maßgeschneiderten DNA-Origami-Nanoplättchen als auch die anschließende elektrisch geleitete Positionierung über den Festkörper-Nanoporen belegen. Sie konnten auch zeigen, dass die größenabhängige Filterung von Biomolekülen und der Nachweis einzelner Zielmoleküle über spezifische „Köder“ funktionieren. „Wir freuen uns besonders darüber, dass wir mit unserem Köder aus spezifischen DNA-Sequenzen einzelne Moleküle herausfiltern und nachweisen konnten“, erläutert Dietz. „Denn neben DNA könnten sich auch eine Menge andere chemische Bestandteile des Stoffgemischs an der entsprechenden Stelle des DNA-Nanoplättchen unspezifisch anheften.“

Für den Einsatz bei hochspezifischen Messverfahren wie der DNA-Sequenzierung gilt es noch einige Hürden zu überwinden, erläutert Rant. „In zukünftigen Arbeiten müssen noch grundlegende Fragen geklärt werden, zum Beispiel in wie weit der direkte Transport von Ionen über die Origami Nanoplättchen die erreichbare Messgenauigkeit beeinflusst oder wie eine noch stabilere Verankerung der Nanoplättchen auf den Festkörperporen erzielt werden kann.“

Diese Forschungsarbeiten wurden unterstützt durch die Exzellenzinitiative des Bundes und der Länder – und zwar im Einzelnen durch das TUM Institute for Advanced Study, die Nano Initiative Munich und das Center for Integrated Protein Science Munich sowie durch den Sonderforschungsbereich (SFB) 863 der Deutschen Forschungsgemeinschaft (DFG) und eine Nachwuchsforscher-Finanzhilfe des Europäischen Forschungsrates (ERC) an Hendrik Dietz. Ruoshan Wei wurde vom Fakultätsgraduiertenzentrum Physik der TUM Graduate School unterstützt.

Originalveröffentlichung:
DNA Origami Gatekeepers for Solid-State Nanopores
Ruoshan Wei, Thomas G. Martin, Ulrich Rant, and Hendrik Dietz
Angewandte Chemie International Edition on-line, April 4, 2012.
DOI: 10.1002/anie.201200688

Kontakt:
Prof. Hendrik Dietz
Fakultät für Physik
Technische Universität München
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 (0)89 289 11615
E-Mail: dietz@tum.de
Web: http://bionano.physik.tu-muenchen.de/

Dr. Ulrich Rant
Walter Schottky Institut
Technische Universität München
Am Coulombwall 3, 85748 Garching, Germany
Tel.: +49 (0)89 289 11578
E-Mail: ulrich.rant@wsi.tum.de
Web: http://www.wsi.tum.de/Research/AbstreitergroupE24/ResearchAreas
/BioNanostructures/tabid/136/Default.aspx

Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://bionano.physik.tu-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik