Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA-Origami-Faltung bildet einen intelligenten Verschluss für festkörperbasierte Nanoporen

19.04.2012
Eine neu entwickelte Variante von festkörperbasierten Nanosensoren wurde mit ein paar Tricks aus der Bionanotechnologie verbessert, so dass die Möglichkeiten zur Messung von Einzelmolekülen und damit ein markierungsfreies Screening von Proteinen erweitert wurden.
Forschern an der TU München ist es gelungen, die Funktionalität von Festkörper-Nanoporen zu verbessern, indem sie diese mit Nanoplättchen-Deckeln aus DNA als eine Art Verschluss versehen haben. Die Ergebnisse dieser Forschungsarbeiten wurden in der Zeitschrift Angewandte Chemie, International Edition, veröffentlicht.

Zentrale Öffnungen in diesen Plättchen fungieren als „Torwächter“ und kontrollieren quasi einzelne Moleküle beim Passieren der Nanoschleuse. Gebildet werden diese Deckel mit dem sogenannten DNA-Origami-Verfahren: Abgeleitet von der japanischen Faltkunst Origami werden DNA-Stränge so synthetisiert, dass sie sich zu maßgeschneiderten Strukturen mit spezifischen chemischen Eigenschaften falten.
Im Verlauf der letzten Jahre ist es der Forschungsgruppe um Prof. Hendrik Dietz an der TUM gelungen, die DNA-Origami-Technik deutlich zu verfeinern. Dabei konnten sie zeigen, dass die mit Origami-Technik hergestellten Strukturen für Forschungszwecke in unterschiedlichsten Bereichen eingesetzt werden können. Ähnliche Fragen zur Messung einzelner Moleküle hat zur gleichen Zeit das Team von Dr. Ulrich Rant mit festkörperbasierten Nanoporen-Sensoren untersucht. Das messtechnische Prinzip dieser Sensoren basiert auf einer dünnen Halbleitermembran mit wenige Nanometer großen Öffnungen, durch die die gewünschten Biomoleküle einzeln geschleust werden. Wenn Biomoleküle durch diese Poren schlüpfen oder dort verweilen, liefern kleinste Änderungen des elektrischen Stroms, der durch die Nanopore fließt, Informationen über ihre charakteristischen physikalischen Eigenschaften. Inzwischen untersuchen Dietz und Rant gemeinsam – beide sind Fellows des TUM Institute for Advanced Study – welche Möglichkeiten eine kombinierte Anwendung dieser beiden Technologien eröffnen könnte.

Für das neue Messverfahren – das vor diesen Experimenten rein hypothetischer Natur war – wird zunächst ein DNA-Origami-Nanoplättchen über dem schmalen Ende einer konisch zulaufenden Festkörper-Nanopore positioniert. Durch eine Modifikation der Größe der zentralen Öffnung in der DNA-Nanoplatte lässt sich eine Filterung von Molekülen nach ihrer Größe erreichen. Um das System weiter zu verfeinern, werden Einzelstrang-DNA-Rezeptoren in der Öffnung als eine Art „Köder“ platziert, die sequenzspezifisch Zielmoleküle binden und damit den Nachweis einzelner Moleküle ermöglichen. Weitere denkbare Anwendungen sind hier unter anderem biomolekulare Interaktions-Screens und der Nachweis einzelner DNA-Sequenzen. Im Prinzip könnte man dieses System auch als Grundlage für ein neues Verfahren zur DNA-Sequenzierung nutzen.

Die Wissenschaftler untersuchten jede dieser Ideen Schritt für Schritt. Dabei konnten sie sowohl die Selbstorganisation von maßgeschneiderten DNA-Origami-Nanoplättchen als auch die anschließende elektrisch geleitete Positionierung über den Festkörper-Nanoporen belegen. Sie konnten auch zeigen, dass die größenabhängige Filterung von Biomolekülen und der Nachweis einzelner Zielmoleküle über spezifische „Köder“ funktionieren. „Wir freuen uns besonders darüber, dass wir mit unserem Köder aus spezifischen DNA-Sequenzen einzelne Moleküle herausfiltern und nachweisen konnten“, erläutert Dietz. „Denn neben DNA könnten sich auch eine Menge andere chemische Bestandteile des Stoffgemischs an der entsprechenden Stelle des DNA-Nanoplättchen unspezifisch anheften.“

Für den Einsatz bei hochspezifischen Messverfahren wie der DNA-Sequenzierung gilt es noch einige Hürden zu überwinden, erläutert Rant. „In zukünftigen Arbeiten müssen noch grundlegende Fragen geklärt werden, zum Beispiel in wie weit der direkte Transport von Ionen über die Origami Nanoplättchen die erreichbare Messgenauigkeit beeinflusst oder wie eine noch stabilere Verankerung der Nanoplättchen auf den Festkörperporen erzielt werden kann.“

Diese Forschungsarbeiten wurden unterstützt durch die Exzellenzinitiative des Bundes und der Länder – und zwar im Einzelnen durch das TUM Institute for Advanced Study, die Nano Initiative Munich und das Center for Integrated Protein Science Munich sowie durch den Sonderforschungsbereich (SFB) 863 der Deutschen Forschungsgemeinschaft (DFG) und eine Nachwuchsforscher-Finanzhilfe des Europäischen Forschungsrates (ERC) an Hendrik Dietz. Ruoshan Wei wurde vom Fakultätsgraduiertenzentrum Physik der TUM Graduate School unterstützt.

Originalveröffentlichung:
DNA Origami Gatekeepers for Solid-State Nanopores
Ruoshan Wei, Thomas G. Martin, Ulrich Rant, and Hendrik Dietz
Angewandte Chemie International Edition on-line, April 4, 2012.
DOI: 10.1002/anie.201200688

Kontakt:
Prof. Hendrik Dietz
Fakultät für Physik
Technische Universität München
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 (0)89 289 11615
E-Mail: dietz@tum.de
Web: http://bionano.physik.tu-muenchen.de/

Dr. Ulrich Rant
Walter Schottky Institut
Technische Universität München
Am Coulombwall 3, 85748 Garching, Germany
Tel.: +49 (0)89 289 11578
E-Mail: ulrich.rant@wsi.tum.de
Web: http://www.wsi.tum.de/Research/AbstreitergroupE24/ResearchAreas
/BioNanostructures/tabid/136/Default.aspx

Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://bionano.physik.tu-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie