Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direktschaltung im Fruchtfliegenhirn: STOPP, diese Nahrung ist verdorben

06.12.2012
Duftstoff Geosmin von toxischen Mikroorganismen löst unbedingten Fluchtreflex aus

Verdorbene Nahrung kann tödlich sein, wenn sie zusammen mit krankheitserregenden Bakterien in den Verdauungstrakt gelangt. Besonders der Geruchssinn muss vor gefährlich verdorbenen Mahlzeiten schützen. Verhaltens- und Neurobiologen des Max-Planck-Instituts für chemische Ökologie in Jena haben jetzt erstmals den Fluchtreflex vor giftiger Nahrung im Gehirn von Fruchtfliegen entschlüsselt.


Geosmin, der typisch erdige Geruchsstoff, der von Schimmelpilzen und anderen Mikroben abgegeben wird. Im Bild seine Strukturformel - ein bicyclischer Alkohol - sowie eine verrottende, mit einem Penicillium-Pilz befallene Orange. Obwohl der Geosmingeruch in der Natur sehr weit verbreitet ist, wird er nur von bestimmten Mikroorganismen produziert und abgegeben

Foto/Kollage: Cell Press / Elsevier / Max-Planck-Institut für chemische Ökologie/Stensmyr

Eine spezielle Nervenleitung – vom Rezeptor in den Antennen und weiter über Sinnes- und Gehirnneuronen - wird durch geringste Mengen an Geosmin in der Luft aktiviert mit der Folge, dass die Fliegen sofort vor dem Geruch flüchten. Geosmin ist der typische Geruch giftiger Bakterien oder Schimmelpilze. Auch Fliegenweibchen legen ihre Eier nicht auf verdorbener, nach Geosmin riechender Nahrung ab. Einmal im Hirn der Fliegen wahrgenommen, schaltet Geosmin alle anderen, vor allem auch anlockende Reize aus, damit die Tiere nicht doch noch in Versuchung geraten – ähnlich unserer Reaktion, wenn wir den Kühlschrank öffnen und dieser nach dem vergessenen Abendessen der letzten Woche riecht. (CELL, 7. Dezember 2012, DOI: 10.1016/j.cell.2012.09.046)

Gesunde und ungesunde Mikroben

Nicht zuletzt die erschreckend vielen Todesfälle im Zusammenhang mit EHEC-Bakterien kontaminierten Biosprossen im Frühling 2011 haben gezeigt, wie wichtig es für jedes nahrungssuchende Lebewesen ist, nützliche von krankheitserregenden Mikroorganismen zu unterscheiden. Jedes Nahrungsmittel, ob Fleisch oder vegetarische Kost, ist je nach Frische unterschiedlich stark von Bakterien oder Mikroorganismen befallen. Die Immunsysteme der Tiere sind darauf vorbereitet, und ist der Verderb noch nicht zu weit fortgeschritten, kann die Nahrung unbeschadet verdaut werden. Was aber schützt den Organismus, wenn die Konzentration der von toxischen Mikroben abgegebenen Giftstoffe gefährlich hoch geworden ist?

Fäulnisgeruch als Warnsignal

Oft ist die äußere Betrachtung eines Nahrungsmittels ausreichend, um verdorbene Nahrung zu meiden – wer beißt schon in eine verfaulte Orange? Noch sicherer aber ist die Wahrnehmung eindeutiger Geruchsstoffe, die durch gefährliche Erreger freigesetzt werden. Erkennt ein Lebewesen einen solchen Geruch und wendet sich daraufhin konsequent ab, kann dies lebensrettend sein. Wie aber wird ein solches Abschreckungsverhalten ausgelöst? Wie sieht der Weg aus vom Geruchsmolekül über Rezeptoren bis ins Hirn und schließlich bis zur Reaktion eines Tieres?

Geosmin und das Modell Fruchtfliege

Für die Beantwortung einer solchen Frage sind die genetisch sehr gut charakterisierten Frucht- oder Essigfliegen der Art Drosophila melanogaster und verwandte Arten perfekt geeignet. Die Fliegen ernähren sich typischerweise von Hefepilzen, die auf verdorbenen Früchten oder Obst wachsen. Deswegen müssen sie „gute“ von „schlechten“ Mikroben genau unterscheiden können. Experimente zeigten, dass Fliegen, die stark verdorbene Nahrung aßen, weil sie zu einer solchen Einschätzung nicht fähig waren, schnell starben, ebenso starben auch aus Fliegeneiern frisch geschlüpfte Larven, sobald sie toxische Mikroben zu sich nahmen. Der Geruchsstoff Geosmin, so ist bekannt, wird von einer Reihe von Toxin bildenden Pilzen und Bakterien abgegeben und könnte der Auslöser für abschreckende Reaktionen sein. Geosmin hat den uns Menschen bekannten Geruch, der bei nassen Böden besonders nach Trockenheit auftritt. Die menschliche Nase reagiert auf Geosmin sehr sensibel; die Schwelle liegt bei 0,1 ppb (parts per billion, also ein Molekül innerhalb von 100 Millionen Teilchen wird schon wahrgenommen). Die Max-Planck-Wissenschaftler fanden jetzt heraus, dass Fruchtfliegen eine sogar noch empfindlichere Antenne für Geosmin haben.
„Wir begannen mit elektrophysiologischen Experimenten und untersuchten nacheinander sämtliche sensorische Neuronen – das waren über 1000 Messungen“, so Marcus Stensmyr, Erstautor der Studie. Hier stellte sich bereits das erste, unerwartete Ergebnis ein: Nur ein Neuron mit der Bezeichnung „ab4B“ reagierte auf Geosmin. Dieser Nerv besitzt den speziellen Rezeptor Or56a, der ausschließlich auf Geosmin anspricht. Die Geruchsspezifität konnte durch Messungen an Einzelneuronen, kombiniert mit Gaschromatographie, bestätigt werden; dabei wurden über 3000 verschiedene Gerüche überprüft. Auch die Spezifität des Rezeptors konnte durch den Einsatz von Zellkulturen, die dieses Protein bildeten, bewiesen werden.

Es folgten bildgebende Untersuchungen am Gehirn der Fliege, die wiederum ein interessantes Ergebnis lieferten: Von den rund 50 Glomeruli, kugeligen Verschaltungseinheiten, die das Riechzentrum der Tiere ausmachen, reagierte nur einer, bezeichnet als DA2, auf Geosmin. Er befindet sich in derselben Region wie diejenigen Glomeruli, die eher abschreckendes Verhalten hervorrufen (siehe Pressemitteilung vom 25.April 2012: „Fliegen verarbeiten anziehende und abschreckende Gerüche in unterschiedlichen Hirnregionen − Neu entwickeltes Analysegerät Flywalk ermöglicht exakte Verhaltensstudien an Insekten“). Nachfolgend wird der Reiz aus dem DA2 Glomerulus interessanterweise von nur einem spezifischen Typ sogenannter Projektionsneuronen (PNs) verarbeitet, welche die Geosmin-Botschaft in übergeordnete Hirnbereiche weiterleiten.

Im Allgemeinen vernetzen PNs verschiedene Glomeruli und verwerten so simultan unterschiedliche Geruchsinformationen, die entsprechend interpretiert das Verhalten des Tieres steuern. „Im Falle von Geosmin, Or56a, DA2 und den dazugehörigen PNs ist es jedoch ganz anders“, so Bill Hansson, Leiter der Studie. In diesem speziellen Schaltkreis löst die durch Geosmin vermittelte Botschaft ohne Umwege von der Antenne direkt ein bestimmtes Verhalten aus. Ähnliche Verschaltungsmuster waren, wenn überhaupt vergleichbar, bislang nur bei der Reaktion auf Sexuallockstoffe (Pheromone) gemessen worden, so der Wissenschaftler. Es ist das erste Mal, dass nun ein solches Durchschaltmuster auch im Zusammenhang mit der Nahrungsaufnahme festgestellt werden konnte.

„Flywalk“ Experimente bestätigen die Labormessungen

Verhaltensstudien mit dem kürzlich etablierten „Flywalk“ System, in welchem Fruchtfliegen, die sich einzeln in Glasröhrchen befinden, gleichzeitig verschiedene Geruchsstoffe angeboten und per Computerkamera gefilmt und ausgewertet werden können, bestätigten die Labormessungen an Nerv und Hirn.
Der direkt durchgeschaltete Geosmin Reiz ruft nicht nur sofort den Stillstand der Tiere oder das Wegfliegen von der Geruchsquelle hervor, sondern „überschreibt“, selbst wenn nur in geringsten Konzentrationen angeboten, konsequent alle anderen gleichzeitig angebotenen Locksignale, sogar die sehr verführerischen Düfte von Essig oder Früchten. Das Gehirn der Tiere ist derart programmiert, dass sie grundsätzlich vor dem Geruch von Geosmin fliehen, selbst wenn zusätzlich noch attraktive Düfte präsent sind – so wird sichergestellt, dass sie nicht doch noch versehentlich verdorbene und giftige Nahrung zu sich nehmen. Dies ist von großem Belang, denn Geruchsgemische sind in unserer natürlichen Umgebung die Regel und nicht die Ausnahme. Geosmin steuert auch das Eiablageverhalten von Weibchen: In Experimenten legten die Fliegen befruchtete Eier auf Nährböden ab, die frisch mit Hefe bewachsen waren, sie mieden jedoch konsequent solche, auf denen gleichzeitig der für die Tiere hochpathogene, Geosmin erzeugende Pilz Streptomyces coelicolor wuchs. Wurde Hefenährboden mit einer Streptomyces Mutante beimpft, die kein Geosmin mehr bilden konnte, legten die Weibchen ihre Eier dort ab. Kurze Zeit später schlüpften die Larven, begannen zu fressen – und starben. [JWK]

Originalveröffentlichung:
Marcus C. Stensmyr, Hany K. M. Dweck, Abu Farhan, Irene Ibba, Antonia Strutz, Latha Mukunda, Jeanine Linz, Kathrin Steck, Sofia Lavista-Llanos, Dieter Wicher, Silke Sachse, Markus Knaden, Paul G. Becher, Yoichi Seki, Bill S. Hansson (2012).
A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila.
CELL, December 7, DOI: 10.1016/j.cell.2012.09.046
http://dx.doi.org/10.1016/j.cell.2012.09.046
Weitere Informationen:
Prof. Dr. Bill S. Hansson, MPI chemische Ökologie, hansson@ice.mpg.de, +49 (0)3641 571401
Dr. Marcus C. Stensmyr, MPI chemische Ökologie, mstensmyr@ice.mpg.de, +49 (0)3641 571420

Bildmaterial:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie