Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direktschaltung im Fruchtfliegenhirn: STOPP, diese Nahrung ist verdorben

06.12.2012
Duftstoff Geosmin von toxischen Mikroorganismen löst unbedingten Fluchtreflex aus

Verdorbene Nahrung kann tödlich sein, wenn sie zusammen mit krankheitserregenden Bakterien in den Verdauungstrakt gelangt. Besonders der Geruchssinn muss vor gefährlich verdorbenen Mahlzeiten schützen. Verhaltens- und Neurobiologen des Max-Planck-Instituts für chemische Ökologie in Jena haben jetzt erstmals den Fluchtreflex vor giftiger Nahrung im Gehirn von Fruchtfliegen entschlüsselt.


Geosmin, der typisch erdige Geruchsstoff, der von Schimmelpilzen und anderen Mikroben abgegeben wird. Im Bild seine Strukturformel - ein bicyclischer Alkohol - sowie eine verrottende, mit einem Penicillium-Pilz befallene Orange. Obwohl der Geosmingeruch in der Natur sehr weit verbreitet ist, wird er nur von bestimmten Mikroorganismen produziert und abgegeben

Foto/Kollage: Cell Press / Elsevier / Max-Planck-Institut für chemische Ökologie/Stensmyr

Eine spezielle Nervenleitung – vom Rezeptor in den Antennen und weiter über Sinnes- und Gehirnneuronen - wird durch geringste Mengen an Geosmin in der Luft aktiviert mit der Folge, dass die Fliegen sofort vor dem Geruch flüchten. Geosmin ist der typische Geruch giftiger Bakterien oder Schimmelpilze. Auch Fliegenweibchen legen ihre Eier nicht auf verdorbener, nach Geosmin riechender Nahrung ab. Einmal im Hirn der Fliegen wahrgenommen, schaltet Geosmin alle anderen, vor allem auch anlockende Reize aus, damit die Tiere nicht doch noch in Versuchung geraten – ähnlich unserer Reaktion, wenn wir den Kühlschrank öffnen und dieser nach dem vergessenen Abendessen der letzten Woche riecht. (CELL, 7. Dezember 2012, DOI: 10.1016/j.cell.2012.09.046)

Gesunde und ungesunde Mikroben

Nicht zuletzt die erschreckend vielen Todesfälle im Zusammenhang mit EHEC-Bakterien kontaminierten Biosprossen im Frühling 2011 haben gezeigt, wie wichtig es für jedes nahrungssuchende Lebewesen ist, nützliche von krankheitserregenden Mikroorganismen zu unterscheiden. Jedes Nahrungsmittel, ob Fleisch oder vegetarische Kost, ist je nach Frische unterschiedlich stark von Bakterien oder Mikroorganismen befallen. Die Immunsysteme der Tiere sind darauf vorbereitet, und ist der Verderb noch nicht zu weit fortgeschritten, kann die Nahrung unbeschadet verdaut werden. Was aber schützt den Organismus, wenn die Konzentration der von toxischen Mikroben abgegebenen Giftstoffe gefährlich hoch geworden ist?

Fäulnisgeruch als Warnsignal

Oft ist die äußere Betrachtung eines Nahrungsmittels ausreichend, um verdorbene Nahrung zu meiden – wer beißt schon in eine verfaulte Orange? Noch sicherer aber ist die Wahrnehmung eindeutiger Geruchsstoffe, die durch gefährliche Erreger freigesetzt werden. Erkennt ein Lebewesen einen solchen Geruch und wendet sich daraufhin konsequent ab, kann dies lebensrettend sein. Wie aber wird ein solches Abschreckungsverhalten ausgelöst? Wie sieht der Weg aus vom Geruchsmolekül über Rezeptoren bis ins Hirn und schließlich bis zur Reaktion eines Tieres?

Geosmin und das Modell Fruchtfliege

Für die Beantwortung einer solchen Frage sind die genetisch sehr gut charakterisierten Frucht- oder Essigfliegen der Art Drosophila melanogaster und verwandte Arten perfekt geeignet. Die Fliegen ernähren sich typischerweise von Hefepilzen, die auf verdorbenen Früchten oder Obst wachsen. Deswegen müssen sie „gute“ von „schlechten“ Mikroben genau unterscheiden können. Experimente zeigten, dass Fliegen, die stark verdorbene Nahrung aßen, weil sie zu einer solchen Einschätzung nicht fähig waren, schnell starben, ebenso starben auch aus Fliegeneiern frisch geschlüpfte Larven, sobald sie toxische Mikroben zu sich nahmen. Der Geruchsstoff Geosmin, so ist bekannt, wird von einer Reihe von Toxin bildenden Pilzen und Bakterien abgegeben und könnte der Auslöser für abschreckende Reaktionen sein. Geosmin hat den uns Menschen bekannten Geruch, der bei nassen Böden besonders nach Trockenheit auftritt. Die menschliche Nase reagiert auf Geosmin sehr sensibel; die Schwelle liegt bei 0,1 ppb (parts per billion, also ein Molekül innerhalb von 100 Millionen Teilchen wird schon wahrgenommen). Die Max-Planck-Wissenschaftler fanden jetzt heraus, dass Fruchtfliegen eine sogar noch empfindlichere Antenne für Geosmin haben.
„Wir begannen mit elektrophysiologischen Experimenten und untersuchten nacheinander sämtliche sensorische Neuronen – das waren über 1000 Messungen“, so Marcus Stensmyr, Erstautor der Studie. Hier stellte sich bereits das erste, unerwartete Ergebnis ein: Nur ein Neuron mit der Bezeichnung „ab4B“ reagierte auf Geosmin. Dieser Nerv besitzt den speziellen Rezeptor Or56a, der ausschließlich auf Geosmin anspricht. Die Geruchsspezifität konnte durch Messungen an Einzelneuronen, kombiniert mit Gaschromatographie, bestätigt werden; dabei wurden über 3000 verschiedene Gerüche überprüft. Auch die Spezifität des Rezeptors konnte durch den Einsatz von Zellkulturen, die dieses Protein bildeten, bewiesen werden.

Es folgten bildgebende Untersuchungen am Gehirn der Fliege, die wiederum ein interessantes Ergebnis lieferten: Von den rund 50 Glomeruli, kugeligen Verschaltungseinheiten, die das Riechzentrum der Tiere ausmachen, reagierte nur einer, bezeichnet als DA2, auf Geosmin. Er befindet sich in derselben Region wie diejenigen Glomeruli, die eher abschreckendes Verhalten hervorrufen (siehe Pressemitteilung vom 25.April 2012: „Fliegen verarbeiten anziehende und abschreckende Gerüche in unterschiedlichen Hirnregionen − Neu entwickeltes Analysegerät Flywalk ermöglicht exakte Verhaltensstudien an Insekten“). Nachfolgend wird der Reiz aus dem DA2 Glomerulus interessanterweise von nur einem spezifischen Typ sogenannter Projektionsneuronen (PNs) verarbeitet, welche die Geosmin-Botschaft in übergeordnete Hirnbereiche weiterleiten.

Im Allgemeinen vernetzen PNs verschiedene Glomeruli und verwerten so simultan unterschiedliche Geruchsinformationen, die entsprechend interpretiert das Verhalten des Tieres steuern. „Im Falle von Geosmin, Or56a, DA2 und den dazugehörigen PNs ist es jedoch ganz anders“, so Bill Hansson, Leiter der Studie. In diesem speziellen Schaltkreis löst die durch Geosmin vermittelte Botschaft ohne Umwege von der Antenne direkt ein bestimmtes Verhalten aus. Ähnliche Verschaltungsmuster waren, wenn überhaupt vergleichbar, bislang nur bei der Reaktion auf Sexuallockstoffe (Pheromone) gemessen worden, so der Wissenschaftler. Es ist das erste Mal, dass nun ein solches Durchschaltmuster auch im Zusammenhang mit der Nahrungsaufnahme festgestellt werden konnte.

„Flywalk“ Experimente bestätigen die Labormessungen

Verhaltensstudien mit dem kürzlich etablierten „Flywalk“ System, in welchem Fruchtfliegen, die sich einzeln in Glasröhrchen befinden, gleichzeitig verschiedene Geruchsstoffe angeboten und per Computerkamera gefilmt und ausgewertet werden können, bestätigten die Labormessungen an Nerv und Hirn.
Der direkt durchgeschaltete Geosmin Reiz ruft nicht nur sofort den Stillstand der Tiere oder das Wegfliegen von der Geruchsquelle hervor, sondern „überschreibt“, selbst wenn nur in geringsten Konzentrationen angeboten, konsequent alle anderen gleichzeitig angebotenen Locksignale, sogar die sehr verführerischen Düfte von Essig oder Früchten. Das Gehirn der Tiere ist derart programmiert, dass sie grundsätzlich vor dem Geruch von Geosmin fliehen, selbst wenn zusätzlich noch attraktive Düfte präsent sind – so wird sichergestellt, dass sie nicht doch noch versehentlich verdorbene und giftige Nahrung zu sich nehmen. Dies ist von großem Belang, denn Geruchsgemische sind in unserer natürlichen Umgebung die Regel und nicht die Ausnahme. Geosmin steuert auch das Eiablageverhalten von Weibchen: In Experimenten legten die Fliegen befruchtete Eier auf Nährböden ab, die frisch mit Hefe bewachsen waren, sie mieden jedoch konsequent solche, auf denen gleichzeitig der für die Tiere hochpathogene, Geosmin erzeugende Pilz Streptomyces coelicolor wuchs. Wurde Hefenährboden mit einer Streptomyces Mutante beimpft, die kein Geosmin mehr bilden konnte, legten die Weibchen ihre Eier dort ab. Kurze Zeit später schlüpften die Larven, begannen zu fressen – und starben. [JWK]

Originalveröffentlichung:
Marcus C. Stensmyr, Hany K. M. Dweck, Abu Farhan, Irene Ibba, Antonia Strutz, Latha Mukunda, Jeanine Linz, Kathrin Steck, Sofia Lavista-Llanos, Dieter Wicher, Silke Sachse, Markus Knaden, Paul G. Becher, Yoichi Seki, Bill S. Hansson (2012).
A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila.
CELL, December 7, DOI: 10.1016/j.cell.2012.09.046
http://dx.doi.org/10.1016/j.cell.2012.09.046
Weitere Informationen:
Prof. Dr. Bill S. Hansson, MPI chemische Ökologie, hansson@ice.mpg.de, +49 (0)3641 571401
Dr. Marcus C. Stensmyr, MPI chemische Ökologie, mstensmyr@ice.mpg.de, +49 (0)3641 571420

Bildmaterial:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neues Unterwasser-Observatorium bei Boknis Eck
19.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf die richtige Behandlung kommt es an

19.01.2017 | Seminare Workshops

Grundlagen der Akustik, Virtuelle Akustik, Lärmminderung, Fahrzeugakustik, Psychoakustik, Produkt Sound Design und Messtechnik

19.01.2017 | Seminare Workshops

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie