Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Beobachtung der Bindung von Kohlenmonoxid

10.01.2011
Kohlenmonoxid ist hochgiftig, weil es die Bindungsstelle des Hämoglobins für Sauerstoff blockiert. Nach dem gleichen Prinzip, einem Porphyrinring mit eingeschlossenem Eisen- oder Kobalt-Atom an das die giftigen Gasmoleküle andocken können, lassen sich auch Sensoren bauen, die vor Kohlenmonoxid warnen.

Physiker um Professor Johannes Barth von der Technischen Universität München (TUM) haben in Zusammenarbeit mit Theoretikern in Lyon und Barcelona Bindungsmechanismen für Gasmoleküle anEisen- oder Kobalt-Porphyrinen aufgeklärt. In der aktuellen Ausgabe von Nature Chemistry berichten sie über die von ihnen gefundenen, unerwarteten Phänomene und zeigen erste Aufnahmen.

Die reversible Bindung von Sauerstoff und Kohlendioxid an Metalloporphyrinen ist ein zentraler Prozess bei der Atmung von Wirbeltieren. Auch für die Katalyse oder für den Bau chemischer Sensoren ist es wichtig zu verstehen, wie kleine Gasmoleküle an komplexierte Metallzentren chemisch binden. Zur Untersuchung dieser Bindungsprinzipen benutzten die Wissenschaftler Porphyrinmoleküle, in deren Mitte jeweils ein Kobalt- oder Eisenatom eingebaut ist. Mit diesen beschichteten sie eine metallische Trägerfläche aus Kupfer oder Silber.

Eine wichtige Eigenschaft der Porphyrine ist ihre strukturelle Flexibilität. Jüngere Arbeiten zeigten, dass jede spezielle geometrische Konfiguration die Funktionalität der Metallo-Porphyrine empfindlich beeinflussen kann. Entsprechend dem derzeitigen Kenntnisstand der Forschung erwarteten die Wissenschaftler,dass sich im Fall von Kohlenmonoxid jeweils nur ein CO-Molekül axial an ein zentrales Metallatom binden würde. Tatsächlich zeigten jedoch die detaillierten Rastertunnelmikroskopie-Experimente von Knud Seufert, dass sich zwei Gasmoleküle zwischen dem zentralen Metallatom und zwei gegenüberliegendenStickstoffatomen anlagern. Entscheidend ist dabei eine Sattelform der Porphyrinmoleküle, wobei die beiden Gasmoleküle die Position des Reiters einnehmen.

Die zentrale Bedeutung der Sattelgeometrie zeigte sich auch in Modellrechnungen von Marie-Laure Bocquet von der Universität Lyon. Ihre Analyse half den Forschern, den neuartigen Bindungsmodus im Detail zu verstehen. Außerdem zeigte sie, dass die Form des molekularen Sattels auch nach der Bindung der beiden Gasmoleküle nahezu unverändert erhalten bleibt.

Ganz anders dagegen reagierten die Porphyrine, als die Wissenschaftler das Kohlenmonoxid durch stärker bindendes Stickstoffmonoxid ersetzten. Dieses bindet wie erwartet direkt am zentralen Metallatom, wobei nur eines an jedes Porphyrin passt. Die elektronische Struktur des Trägermoleküls wird dabei stark verändert und der charakteristische Sattel verflacht. Somit unterscheidet sich die Reaktion des Porphyrins auf unterschiedliche Gassorten drastisch – ein Befund, der auch für potentielle Anwendungen wie Sensoren von Interesse ist.

Dr. Willi Auwärter, einer der Autoren, ist begeistert: „Neu ist an unserem Ergebnis, dass wir eben diesen Mechanismus das erste Mal auf molekularer Ebene wirklich gesehen haben. Wir können sogar ganz gezielt einzelne Gasmoleküle von einem Porphyrinring auf einen anderen durch molekulare Manipulation umsetzen.“ Das Team hat sich zum Ziel gesetzt, die physikalischen und chemischen Prozesse an Oberflächen und Nanostrukturen aufzuklären.

Nachdem ihnen diese grundlegenden Einblicke gelungen sind, stellen sich die nächsten Fragen: Wie groß ist der Einfluss des Zentralatoms? Wie werden sich die Bindungen ändern, wenn das Ausgangsmolekül nicht verformt ist? Wie kann man mit solchen Systemen den Ladungstransfer an Grenzflächen steuern?

Die Arbeiten wurden insbesondere unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Munich Center for Advanced Photonics (MAP)), des TUM-Instiute for Advanced Study, des European Research Councils (ERC Advanced Grant MolArt), sowie des spanischen Ministerio de Ciencia e Innovacion. Das Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften unterstützte die Arbeiten durch Bereitstellung von Rechenzeit. Professor Barth ist Mitglied im Zentralinstitut für Katalyseforschung (CRC) der TUM.

Originalpublikation:

Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation, Knud Seufert, Marie-Laure Bocquet, Willi Auwärter, Alexander Weber-Bargioni, Joachim Reichert, Nicolás Lorente undJohannes V. Barth, Nature Chemistry, Online 9. Januar 2011 – DOI: 10.1038/NCHEM.956

http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.956.html

Weitere Publikation zu diesem Thema:

Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide, Knud Seufert, Willi Auwärter und Johannes V. Barth, Journal of the American Chemical Society, 2010, 132, 18141–18146 – DOI: 10.1021/ja1054884

Link: http://pubs.acs.org/doi/abs/10.1021/ja1054884

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Straße 1
85748 Garching, Germany
Tel: +49 89 289 12608
Fax: +49 89 289 12338
E-Mail: jvb@ph.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und rund 26.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.forschung-garching.de
http://www.e20.ph.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf die richtige Behandlung kommt es an

19.01.2017 | Seminare Workshops

Grundlagen der Akustik, Virtuelle Akustik, Lärmminderung, Fahrzeugakustik, Psychoakustik, Produkt Sound Design und Messtechnik

19.01.2017 | Seminare Workshops

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie