Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Beobachtung der Bindung von Kohlenmonoxid

10.01.2011
Kohlenmonoxid ist hochgiftig, weil es die Bindungsstelle des Hämoglobins für Sauerstoff blockiert. Nach dem gleichen Prinzip, einem Porphyrinring mit eingeschlossenem Eisen- oder Kobalt-Atom an das die giftigen Gasmoleküle andocken können, lassen sich auch Sensoren bauen, die vor Kohlenmonoxid warnen.

Physiker um Professor Johannes Barth von der Technischen Universität München (TUM) haben in Zusammenarbeit mit Theoretikern in Lyon und Barcelona Bindungsmechanismen für Gasmoleküle anEisen- oder Kobalt-Porphyrinen aufgeklärt. In der aktuellen Ausgabe von Nature Chemistry berichten sie über die von ihnen gefundenen, unerwarteten Phänomene und zeigen erste Aufnahmen.

Die reversible Bindung von Sauerstoff und Kohlendioxid an Metalloporphyrinen ist ein zentraler Prozess bei der Atmung von Wirbeltieren. Auch für die Katalyse oder für den Bau chemischer Sensoren ist es wichtig zu verstehen, wie kleine Gasmoleküle an komplexierte Metallzentren chemisch binden. Zur Untersuchung dieser Bindungsprinzipen benutzten die Wissenschaftler Porphyrinmoleküle, in deren Mitte jeweils ein Kobalt- oder Eisenatom eingebaut ist. Mit diesen beschichteten sie eine metallische Trägerfläche aus Kupfer oder Silber.

Eine wichtige Eigenschaft der Porphyrine ist ihre strukturelle Flexibilität. Jüngere Arbeiten zeigten, dass jede spezielle geometrische Konfiguration die Funktionalität der Metallo-Porphyrine empfindlich beeinflussen kann. Entsprechend dem derzeitigen Kenntnisstand der Forschung erwarteten die Wissenschaftler,dass sich im Fall von Kohlenmonoxid jeweils nur ein CO-Molekül axial an ein zentrales Metallatom binden würde. Tatsächlich zeigten jedoch die detaillierten Rastertunnelmikroskopie-Experimente von Knud Seufert, dass sich zwei Gasmoleküle zwischen dem zentralen Metallatom und zwei gegenüberliegendenStickstoffatomen anlagern. Entscheidend ist dabei eine Sattelform der Porphyrinmoleküle, wobei die beiden Gasmoleküle die Position des Reiters einnehmen.

Die zentrale Bedeutung der Sattelgeometrie zeigte sich auch in Modellrechnungen von Marie-Laure Bocquet von der Universität Lyon. Ihre Analyse half den Forschern, den neuartigen Bindungsmodus im Detail zu verstehen. Außerdem zeigte sie, dass die Form des molekularen Sattels auch nach der Bindung der beiden Gasmoleküle nahezu unverändert erhalten bleibt.

Ganz anders dagegen reagierten die Porphyrine, als die Wissenschaftler das Kohlenmonoxid durch stärker bindendes Stickstoffmonoxid ersetzten. Dieses bindet wie erwartet direkt am zentralen Metallatom, wobei nur eines an jedes Porphyrin passt. Die elektronische Struktur des Trägermoleküls wird dabei stark verändert und der charakteristische Sattel verflacht. Somit unterscheidet sich die Reaktion des Porphyrins auf unterschiedliche Gassorten drastisch – ein Befund, der auch für potentielle Anwendungen wie Sensoren von Interesse ist.

Dr. Willi Auwärter, einer der Autoren, ist begeistert: „Neu ist an unserem Ergebnis, dass wir eben diesen Mechanismus das erste Mal auf molekularer Ebene wirklich gesehen haben. Wir können sogar ganz gezielt einzelne Gasmoleküle von einem Porphyrinring auf einen anderen durch molekulare Manipulation umsetzen.“ Das Team hat sich zum Ziel gesetzt, die physikalischen und chemischen Prozesse an Oberflächen und Nanostrukturen aufzuklären.

Nachdem ihnen diese grundlegenden Einblicke gelungen sind, stellen sich die nächsten Fragen: Wie groß ist der Einfluss des Zentralatoms? Wie werden sich die Bindungen ändern, wenn das Ausgangsmolekül nicht verformt ist? Wie kann man mit solchen Systemen den Ladungstransfer an Grenzflächen steuern?

Die Arbeiten wurden insbesondere unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Munich Center for Advanced Photonics (MAP)), des TUM-Instiute for Advanced Study, des European Research Councils (ERC Advanced Grant MolArt), sowie des spanischen Ministerio de Ciencia e Innovacion. Das Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften unterstützte die Arbeiten durch Bereitstellung von Rechenzeit. Professor Barth ist Mitglied im Zentralinstitut für Katalyseforschung (CRC) der TUM.

Originalpublikation:

Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation, Knud Seufert, Marie-Laure Bocquet, Willi Auwärter, Alexander Weber-Bargioni, Joachim Reichert, Nicolás Lorente undJohannes V. Barth, Nature Chemistry, Online 9. Januar 2011 – DOI: 10.1038/NCHEM.956

http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.956.html

Weitere Publikation zu diesem Thema:

Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide, Knud Seufert, Willi Auwärter und Johannes V. Barth, Journal of the American Chemical Society, 2010, 132, 18141–18146 – DOI: 10.1021/ja1054884

Link: http://pubs.acs.org/doi/abs/10.1021/ja1054884

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Straße 1
85748 Garching, Germany
Tel: +49 89 289 12608
Fax: +49 89 289 12338
E-Mail: jvb@ph.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und rund 26.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.forschung-garching.de
http://www.e20.ph.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie