Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Verknüpfung von Molekülen und Mikroben

18.08.2015

Mikroben sind die ältesten und erfolgreichsten Organismen auf unserem Planeten. Sie kommunizieren und wirken aufeinander ein, indem sie sich der Chemie als Sprache bedienen. Das Verständnis dieser komplexen Interaktionen in der Natur ist noch immer eine große Herausforderung. Die Produktion bestimmter Moleküle individuellen bakteriellen Zellen oder zumindest Zellpopulationen in komplexen Umweltproben zuzuordnen, spielt dabei eine Schlüsselrolle. Wissenschaftler konnten jetzt die Verteilung von Antibiotika und ihrer Produzenten in natürlichen Proben gleichzeitig sichtbar machen.

Mikroben sind die ältesten und erfolgreichsten Organismen auf unserem Planeten. Sie kommunizieren und wirken aufeinander ein, indem sie sich der Chemie als Sprache bedienen. Während die Forschung in den letzten Jahrzehnten faszinieren Einblicke in die chemischen Wechselwirkungen von Mikroorganismen im Labor ermöglichte, ist das Verständnis der komplexen Interaktionen in der Natur noch immer eine große Herausforderung.


Die Verteilung der Symbiontenzellen (weiße Flecken) und der Antibiotika, die sie produzieren (Wärmekarte in Falschfarben) auf der Oberfläche eines Bienenwolfkokons (Philanthus triangulum).

Martin Kaltenpoth und Aleš Svatoš / Max-Planck-Institut für chemische Ökologie

Die Produktion bestimmter Moleküle individuellen bakteriellen Zellen oder zumindest Zellpopulationen in komplexen Umweltproben zuzuordnen, spielt dabei eine Schlüsselrolle. Wissenschaftlern des Max-Planck-Instituts für chemische Ökologie ist in Zusammenarbeit mit der Firma Thermo Fisher Scientific ein entscheidender Schritt in diese Richtung gelungen: Sie konnten die Verteilung von Antibiotika und ihrer Produzenten in natürlichen Proben gleichzeitig sichtbar machen. (The ISME Journal, Juli 2015).

Seit der Entdeckung des Penicillins durch Alexander Fleming im Jahr 1928 haben Antibiotika die Humanmedizin revolutioniert, indem sie die erfolgreiche Behandlung zahlreicher Infektionskrankheiten ermöglichten. Die medizinische Anwendung von Antibiotika führte zu der Annahme, dass diese Verbindungen in der Natur von den produzierenden Mikroorganismen ebenfalls als Waffen im Kampf gegen konkurrierende Lebewesen eingesetzt werden.

Allerdings zeigten Entdeckungen aus jüngerer Zeit, dass geringe Mengen antibiotischer Substanzen die Genexpression des Zielorganismus beeinflussen können, ohne diesen zu schädigen. Dies legt nahe, dass die Substanzen Signalfunktionen haben könnten.

Im Allgemeinen ist trotz der immensen Bedeutung für die Humanmedizin wenig über die Ökologie von Antibiotika bekannt, insbesondere was ihre Funktionen im natürlichen Kontext betrifft. Ein Hauptproblem stellt dabei die Schwierigkeit dar, Antibiotika in komplexen Umweltproben zu entdecken und zu quantifizieren, und darüber hinaus ihre Produktion und ihre Wirkung in situ zu beobachten.

Um genau dies zu erreichen, konzentrierten sich die Wissenschaftler auf ein vergleichsweise einfaches System, an dem nur eine begrenzte Anzahl von interagierenden Lebewesen beteiligt ist: die Verteidigungs-Allianz zwischen Europäischen Bienenwölfen Philanthus triangulum, einer Grabwespenart, und Bakterien der Gattung Streptomyces (siehe frühere Pressemitteilungen „Bienenwolf schützt sich mit Antibiotika“ von Februar 2010 und „Treue Partner seit der Kreidezeit“ von April 2014).

In dieser Symbiose werden die Bakterien in speziellen Reservoiren in den Antennen weiblicher Bienenwölfe kultiviert und später auf die Kokons des sich entwickelnden Nachwuchses übertragen. So ist der Bienenwolfnachwuchs während der langen Periode des Überwinterns im Boden vor Schimmelpilzen geschützt. Die Kenntnis über die Anwesenheit der Symbiose-Bakterien sowie der Antibiotika, die sie auf dem Bienenwolfkokon produzieren, stellte eine ausgezeichnete Grundlage für die Wissenschaftler dar, eine Methode für die gleichzeitige Lokalisierung bakterieller Zellen und ihrer Stoffwechselprodukte in einer Umweltprobe zu entwickeln.

Die Messung der Antibiotika auf dem Bienenwolfkokon wurde mit Hilfe bildgebender massenspektrometrischer Verfahren (MS Imaging) bewerkstelligt. Es handelt sich dabei um eine Analysetechnik, die einen eng fokussierten Laserstrahl nutzt, um Verbindungen von der Oberfläche einer Probe zu trennen und sie zu ionisieren und die daraus resultierenden Molekülionen in einem Massenspektrometer zu analysieren.

„Obwohl die laterale Auflösung des MS-Imaging immer noch begrenzt ist, hat es ein enormes Potenzial für das Aufspüren und Sichtbarmachen von chemischen Verbindungen in der Natur, weil es ein breites Einsatzspektrum für eine Vielzahl von Substanzen gibt“, kommentiert Aleš Svatoš, der Leiter der Arbeitsgruppe Massenspektrometrie. Auf der äußeren Oberfläche von Bienenwolfkokons konnte das MS-Imaging eine ungleichmäßige, aber ausgedehnte Verbreitung der Antibiotika Piericidin A1 und B1 nachweisen.

Anschließend wurden die Kokons einer Fluoreszenz-in-situ-Hybridisierung (FISH) unterzogen: Indem man mit Hilfe eines Fluoreszenzfarbstoffs markierte Sonden an die RNA der Bakterien bindet, können individuelle Symbiontenzellen unter dem Fluoreszenzmikroskop sichtbar gemacht werden. Durch das Anbringen von Farbmarkierungen an den Proben, die sowohl im MS-Imaging als auch in der FISH sichtbar sind, konnten die Wissenschaftler die resultierenden Bilder beider Verfahren kombinieren. Auf diese Art und Weise wurden die individuellen Symbiontenzellen sowie die Menge der sie umgebenden Antibiotika gleichzeitig sichtbar gemacht.

„Beide Methoden waren vorher bekannt, aber keiner hatte sie bisher miteinander kombiniert. Die Stärke dieses Ansatzes liegt vor allem darin, dass FISH das Potenzial hat, individuelle Zellen in komplexen Proben zu lokalisieren und zu identifizieren, während das MS-Imaging gleichzeitig die Detektion ökologisch relevanter chemischer Verbindungen erlaubt“, meint Martin Kaltenpoth, der Leiter der Max-Planck-Forschungsgruppe Insektensymbiosen war und inzwischen Professor an der Universität Mainz ist.

Die Welt ist voller Mikroorganismen, und diese Kleinstlebewesen haben einen enormen Einfluss auf alles Leben auf unserem Planeten. Das Verständnis darüber, wie sie miteinander und mit anderen, mehrzelligen Lebewesen in Wechselwirkung treten, stellt daher eine fundamentale Frage in der Biologie dar. Das Aufspüren und Sichtbarmachen von natürlichen chemischen Verbindungen und die gleichzeitige Identifizierung ihrer mikrobiellen Produzenten ist ein wichtiger erster Schritt, um irgendwann einmal solche komplexen Wechselwirkungen direkt beobachten zu können. Dann könnten wir irgendwann auch die ursprünglichen Funktionen von antibiotischen Substanzen und vieler anderer von Mikroorganismen produzierten Verbindungen in der Natur verstehen. [MK/AO]

Originalveröffentlichung:
Kaltenpoth, M., Strupat, K., Svatoš, A. (20159. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. The ISME Journal,
doi: 10.1038/ismej.2015.122.
http://dx.doi.org/10.1038/ismej.2015.122

Weitere Informationen:
Prof. Dr. Martin Kaltenpoth, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Tel. +49 6131 3924411, E-Mail mkaltenp@uni-mainz.de
Dr. Aleš Svatoš, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1700, E-Mail svatos@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über
http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/insect-symbiosis.html?&L=1 (Max-Planck-Forschungsgruppe Insektensymbiose)
http://www.oekologie.biologie.uni-mainz.de/ (Johannes Gutenberg-University Mainz, Department of Ecology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz